
P-A192 525 SEMI-SUPERVISED TWO STAGE CLASSIFICATION TECHNIGUE(U) 1/3
AMY. MILITARY PERSONNEL CENTER ALEXANDRIA VA
0 A TOOMEY 31 JUL 87

UNCLASSIFIED F/ 14/ NL

0h000000000000

Ehommhhhhhhhhhl



"Ill Illu

-!1 16

_1.

!11111125 IIIIL A II1.6,,

MICROCOPY RESOLUTION TEST CHART

No 0.

a. ., .-.
,~* f ~ N sA V :J'



O FILE COPI

In

N

SEMI-SUPERVISED TWO STAGE CLASSIFICATION
TECHNIQUE

LLT DANIEL A. TOOMEY
HODA, MILPERCEN (DAPC-OPA-E)

200 Stovall Street
Alexandria, VA 22332

3Juy8DTIC

Final Report LECTE31 July 1987 IM 6:8U.
MA06 1988 J

H

Approved for public release; distribution unlim ed.

A thesis submitted to University of Wisconsin-Madison, Madison
Wisconsin, in partial fulfillment of the requirements for the

degree of Master of Science.

8 506 110



SECURITY CLASSIFICATION OF THIS PAGE
I Form Approved

REPORT DOCUMENTATION PAGE OMBNo 0704-0188IErp Date Jun 30, 1986

la. REPORT SECURITY CLASSIFICATION lb. RETIT ARI1401 ,

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

-4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
Semi-Supervised Two Stage Classificatip

Technique Final Report 31 July 1987
6a. NAME OF PERFORMING ORGANIZATION :6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO

11. TITLE (Include Security Classification)

12 PERSONAL AUTHOR(S)
31 July 1987

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) PAGE COUNT
!-aster of Science FROM TO T 228
16 SUPPLEMENTARY NOTATION

Approved for public release; distribution unlimited.

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

LD GROUP SUB-GROUP . . f . . 4

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
A Semi-Supervised Two Stage Classification Technique has been developed on

i3' .. PtC-A2 computer at the Lnvironmenal Remote Sensinn Center, University
of *isconsin-Madison. This technique is used to classify multispectral
digital images. It involves two stages. The first is a hybrid clustering
technique and the second is a reclassification (post-classification process)

of designated spectral classes in a spectrally classified image with
ancillary information.

In the first stage, tine analyst directs the clustering algorithm by
delineating a certain number of training "areas" so that an unsupervised
clustering algorithm can identify a user defined number of spectral clusters
in each area. These clusters are then implemented as seeds to collect
further information from throughout the entire image. ( over)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
i&-JNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

7 -_ ..



Block 19 (continued)

In the second stage, ancillary data is employed as a Second Stage of
digital information to reclassify certain spectrally classified
land cover types to increase the classification accuracy. Two
types of reclassification can be applied, a statistical method and
threshold level approach. The statistical reclassification uses
Second Stage statistical input, while the threshold level approach
implements a Second Stage image file that is amenable to thresholding.

$4 jc4 , 7 ..1 /'



APPROVED:

Frank L. Scarpace
Associate ProfessoP .

Environmental Studies and
Civil and Environmental Engineering

Date:



iii

A digitized color infrared aerial photograph, of the

Chesapeake Bay region, is classified using both stages of

the classification technique to demonstrate the potential

of reclassifying only certain spectral classes with ancil-

lary data. A statistical reclassification is done accord-

ing to texture as the Second Stage; a threshold range rec-

lassification is accomplished with a vegetation index

ratio; and a threshold level reclassification is performed

using a polygon-masked image.
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ABSTRACT

A Semi-Supervised Two Stage Classification Technique has

been developed on the IBM PC-AT computer at the

Environmental Remote Sensing Center, University of

Wisconsin-Madison. This technique is used to classify

multispectral digital images. It involves two stages.

The first stage is a hybrid clustering technique and the

second is a reclassification (post-classification process)

of a spectrally classified image with digital ancillary

information.

In the first stage, the analyst directs the clustering

algorithm by delineating a certain number of training

areas so that an unsupervised clustering algorithm can

identify a user defined number of spectral clusters in

each area. These clusters are then implemented as seeds

to collect further spectral information from throughout 0o

the entire image. Mismerging of spectral clusters to the

seeds is prevented by a user defined variance threshold

and a transformed divergence computation.
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The resulting clusters, training sets, are implemented

into a statistical classifier to segment the scene

according to spectral information.

-In the second stage, ancillary data is employed as a

Second Stage of digital information to reclassify certain

spectrally classified land cover types to increase the

classification accuracy. Two types of reclassification

can be applied, a statistical method and threshold level

approach. The statistical reclassification uses Second

Stage statistical input, while the threshold level

approach implements a Second Stage image file that is

amenable to thresholding.

A SPOT satellite sub-scene over the Greater-Madison area

in Wisconsin is segmented utilizing the Semi-Supervised

clustering approach. The FINDSET algorithm is an unsuper-

vised clustering algorithm that is presently employed at

the Environmental Remote Sensing Center. A comparison

between the Semi-Supervised approach and the FINDSET

algorithm is assessed.
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Chapter I

Introduction

The following thesis research studies the use of unsuper-

vised clustering algorithms and the implementation of

ancillary data in the automated classification process of

remotely sensed data. This study is a development and

evaluation of a Semi-Supervised Two Stage classification

technique. This classifier combines the advantages of an

unsupervised classification with the direction (guidance)

attributed a supervised classification.

In previous years, unsupervised clustering algorithms that

are not considered statistically rigorous have been found

to contain biases toward certain aspects of remotely

sensed data. FINDSET is such an algorithm and is present-

ly used at the Environmental Remote Sensing Center at the

University of Wisconsin-Madison (see section 2.11). It is

based on the SEARCH algorithm of the ELAS package (NASA,

1981)(see section 2.10). A Semi-Supervised approach

developed in this thesis research reshapes the traditional

algorithm structure of FINDSET to potentially reduce these
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biases.

Currently ancillary data is indiscriminately used in

assisting the spectral classification of the entire image

of interest, thereby classifying all the land cover in an

image with spectral and ancillary data. From the results

of previous research, discussed in chapter three, it can

be concluded that ancillary data is more appropriate in

classifying only certain land cover types in an image. A

reclassification approach that implements ancillary data

in a discriminant manner, directing the reclassification

of only certain cover types, could be more useful to the

remote sensing community.

The thesis hypothesis is 1) that a Semi-Supervised Two

Stage Classification technique can be developed that would

reduce some of the biases possibly inherent in the FINDSET

algorithm and 2) that the application of ancillary data as

a Second Stage used in a discriminant manner will improve

the classification accuracy.

VV~ ~ S~% %~ %VU~ Aw\~' ~ ~ -1 -\~
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This research involves two objectives

1) Develop and evaluate a clustering technique that

could reduce some of the biases that may be found in

FINDSET. The clustering approach developed is termed

Semi-Supervised. The Semi-Supervised method stratifies

the FINDSET approach to clustering, and includes addi-

tional statistical metrics to assist in forming spectral

statistics for the land cover classes in the image.

2) To implement a post-classification routine (after

the spectral classification) that would implement ancil-

lary data in a discriminant manner; reclassifying only

certain land cover classes, spectrally classified, with

additional digital information.

These two processes are not necessarily sequential in

application. The Semi-Supervised approach does not have

to implement a reclassification; and the post classifi-

cation reclassification does not require a spectral clas-

sification that results from the Semi-Supervised process.
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The remaining chapters discuss background (literature re-

view), the developed algorithms and methodology of the

analysis. Chapter 2 explains the classification tech-

niques and processes of remotely sensed data. Chapter 3

discusses the application of ancillary data in the classi-

fication process. Chapter 4 details the Semi-Supervised

approach in clustering analysis and the Second Stage re-

classification post-classification approach. Chapter 5

details the methodology involved in analyzing the algo-

rithm and describes the study sites selected. In chapter

6 the results of the research are discussed. Following

the conclusions in chapter 7 is an appendix of source code

of the programs.

MW W
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Chapter II

Classification Procedures and Techniques
of Remotely Sensed Data

2.1 Introduction

The following is a discussion of the current techniques in

automated image classification procedures of remotely

sensed data. The following is not an exhaustive review of

the various classification approaches, but serves to

inform the reader of some of the methods available. Clus-

tering analysis is detailed in the latter part of this

chapter. Although the thesis research involves a c-uster-

ing analysis and a reclassification technique, a review of

basic classification processes is established as useful

background information for the reader.

2.2 General Discussion on Automated Classification
P

Remotely sensed data often involves multispectral infor-

mation in the form of a digital image. Remotely sensed

images capture the relative spectral reflectance for all

the earth resources within the area covered by the scene.

A multispectral image is comprised of multiple bands of

* - ~ .. ~ ~ ~u..-- W *.6.
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data, each representing reflectance values for certain

ranges of the electromagnetic spectrum. For example, a

photographic false color composite is a typical multi-

spectral image composed of three bands of data; typically

the green band (.5 - .6 micrometers(pm)), the red band (.6

- .7 pm), and the near-infrared band (.7 - .9 pm).

Different earth resources in an image can be described by

certain combinations of spectral reflection values from

the individual bands. Through automated classification

techniques with computers, all the earth resources in an

image can be classified into the appropriate land cover

class. Automated classification according to multi-

spectral information is called spectral pattern recog-

nition (Lillesand and Kiefer, 1987). This chapter details

some of the methods of spectral pattern recognition used

in research today.

A multispectral image is comprised of picture elements,

pixels, which are quantitative representations of the

spectral reflection of an area on the earth's surface.

The size of the area depends on the resolution of the

sensor. Spectral reflection is a relative measurement of

the rE:flected energy from an earth resource at various
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wavelengths and is recorded as a digital value by the

sensor. An image pixel is a vector involving spectral

reflectance values from each spectral band, registered to

represent the same area on the ground. An image pixel is

a vector of n dimensions. N is defined as the number of

spectral bands available to comprise the image. An image

pixel can be called a pattern vector, or feature vector,

and is plotted in n - dimensional measurement space

(Figure 1). Measurement space, or vector space, is

described by the spectral bands of data, each band repre-

senting a different dimension in vector space. There are

two spectral bands illustrated in figure 1. Throughout

the text two dimensional figures will be diagramed, such

as figure 1, which contain two axis, each symbolically

represented by a band number. In this instance band 3

could represent the red band and band 4 the near-infrared

band.

Each land cover category within a digital image can be

represented by a spectral class having certain spectral

characteristics. The spectral characteristics of each

class can be depicted by selecting samples representing

that category in the image. These samples or feature

%.
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vectors are the spectral signatures of the category, and

as vectors can be plotted in measurement space. Patterns

of the same class tend to have similar spectral attributes

and cluster in vector space forming clouds of feature

vectors (Figure 1). A cluster or several clusters repre-

sent each land cover type in an image. These clusters

occupy certain areas in multidimensional space, segmenting

measurement space into regions that represent the various

land cover types. The intent of spectral classifiers is

to segment the pixels, vectors, into the appropriate

regions of vector space, labelling it as a member of that

land cover class.

Before the image can be classified, the clusters of

feature vectors for each land cover type must first be

identified, so that the spectral regions can be defined

for each category. This is accomplished in the training

or learning phase by identifying sample patterns for each

of the land cover types in an image. The sample patterns

can be acquired in a supervised or unsupervised manner.

In the supervised process the computer is guided by the

analyst to identify the spectral characteristics of each

land cover class. In the unsupervised approach, a
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computer algorithm identifies the different spectral

categories in the multispectral data, with little or no

input from the analyst.

The remaining sections of this chapter will detail some of

the standard procedures of automated image segmentation:

the supervised and unsupervised learning phases in classi-

fications; three image classification decision rules: the

box-filter, minimum distance to mean, and the maximum

likelihood rule; and also review some algorithm devel-

opments for unsupervised clustering classifications.

2.3 Supervised and Unsupervised Classifications

The statistical method is one of the standard approaches

in pattern classification. It is assumed that the cluster

distributions, for each class, in measurement space can be

described by statistical parameters: the mean vector, the

number of standard deviations from the mean, and the co-

variance matrix. The mean vector consists of mean values,

in each spectral band, that represent the average spectral

response for that land cover class in that band. The

means from all the spectral bands identify the centroid of
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the cluster in measurement space. The standard deviations

describe the variance of the data around the means in each

of the bands. And the covariance matrix describes the

dispersion of the pattern vectors around the centroid; it

thus details the shape of the cloud.

The multidimensional distribution of the cluster is

assumed to be modeled as a multivariate gaussian (normal)

distribution. Since the shape of the distribution is

assumed to be known, only the parameters of the distri-

bution need to be determined and stored to describe the

cluster. These parametric statistical assumptions are

implemented in classifications to segment vector space

into spectral class regions. These parameters can be

determined through supervised or unsupervised techniques.

The supervised approach requires that the analyst delin-

eates training areas for each land cover category, from 11
which the computer obtains training samples for the class.

From these feature vectors the distribution parameters are

computed to represent the spectral class statistically.

To train the computer, polygons are placed over areas of

the image, on the computer monitor, that were considered

I1
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ideal training areas, representing the spectral identities

of the land cover. These sites are considered ideal

because of their spectrally homogeneous appearance; and

through field checks and verifications with other ancil-

lary information. Through this process the analyst is

able to describe the spectral characteristics of the

clusters that represent the different cover types.

The unsupervised approach segments measurement space into

uniquely defined spectral classes, by algorithms that

identify these clusters with little guidance from the

user. The clusters are then utilized to classify the

image. The user then determines the utility of each of

these clusters by studying the areas classified in the

image.

•I

There are many approaches to unsupervised clustering.

Some methods identify the statistical parameters, for each

spectral class, to be implemented in a statistical classi-

fication program to segment the image. Statistical clas-

sification programs are guided by certain decision rules

to classify the image, discussed in the next section.

Other approaches simultaneously classify the image as the

I
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pattern vectors are aggregated into their clusters. These

techniques are discussed in further detail in future

sections of this chapter.

2.4 Classification Decision Rules

The basic decision rules employed to statistically segment

digital images in the world of remote sensing are the box-

filter (parallelepiped), minimum distance to mean

(Euclidean Distance) and the maximum likelihood classifi-

cation scheme. To facilitate clear explanations of the

following classification methods, only two dimensions of

the data will be depicted in the illustrations. Normally

all the spectral bands of the image are implemented in the

classification process.

These three decision rules require the statistical

parameters for each class as input from the analyst,

obtained during the learning process. These parameters

describe each of the representative land covers in the

image, detailing the clusters that occupy certain regions

in measurement space. Sequentially each pixel in the

image is plotted in vector space and compared to the

IM
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training clusters. Each pixel is categorized into the

class to which it is most similar according to the

following decision rules.

2.4.1 Minimum Distance to Mean Decision Rule

A minimum distance to mean decision rule (Lillesand and

Kiefer, 1987; Nelson et al., 1981) bases the classi-

fication of each feature vector on the Euclidean distance

between the centroids of each cluster to the feature

vector. After the distance between the unknown feature

vector and every training cluster's centroid are

calculated, the unknown vector is classified into the

category to which it is closest.

A disadvantage with this algorithm is that it is insen-

sitive to the different degrees of variance in the train-

ing data. The image pixel, labelled 2, in figure 2 is

classified as sand according to the minimum distance to

mean rule, even though the pixel should be classified as

urban according to the variance of the data. This could

be corrected by using a statistical distance metric in-

stead of a Euclidean distance function. A statistic
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distance function is a measurement that considers the

variance of the distributions when calculating the

distances between the centers of the clusters. Unfortu-

nately, many statistical separation measures, such as

Swain-Fu (Maktav,1985; Armstrong,1977), pairwise diver-

gence (Pearson,1977), Jeffries-Matusita (Maktav,1985;

Swain and Davis,1978), and the normalized distance between

the mean (Swain and Davis,1978) are criteria to measure

the distance between two clusters, not the distance be-

tween a point and a cluster as would be required for a

minimum distance to mean rule. The Mahalanobis distance

(Duda and Hart,1973), however, appears to be a metric that

determines the statistical distance between a point and a

cluster:

r = (x - p)t I- (x - p).

This distance measurement implicates the dispersion of the

cluster, by including the inverse of the covariance ma-

trix. The Mahalanobis distance measure is a complex cal-

culation and defeats one of the advantages of a minimum

distance to mean classifier, which is the speed and

simplicity of the computations.
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2.4.2 Box Classification Decision Rule

A box classification filter (Lillesand and Kiefer, 1987;

Story et al., 1984) bases the classification decision on

the ranges of the multispectral dispersion of the training

clusters in each of the spectral bands. The unclassified

feature vector must fall within the limits of the maximum

and minimum training values, in each spectral band, to be

a member of that spectral category. Unlike the minimum

distance to mean approach, the box filter is sensitive to

the variance of the data by considering the dispersion of

the spectral values in each band. The high and low values

in each band create a box around the center of the cluster

(Figure 3). The unclassified pixel must fall within this

box to be classified as a member of that class. The box

becomes a parallelepiped when more than two dimensions of

data are involved in describing the training set statis-

tics. Therefore, this classification scheme is also

titled the parallelepiped classifier.

. -..- ,- - . .-,- . . - --- ,- , , - . Q , - .,..7, ,, . .
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If the unknown pixel falls outside the limits it is

considered unclassified. This often results in a large

percentage of the image remaining unclassified. In Story

et al. (1984), a box-filter classification resulted in

79.9% of the image remaining unclassified. There was,

however, a high degree of accuracy within the areas clas-

sified, 86.44%. This indicates that the box regions

describe the spectral characteristics of the spectral

classes particularly well but more training set data is

required to classify the remaining areas of the scene. A

box-classifier works well except for overlapping classes,

where two different regions overlap (Figure 3). Misclas-

sification often results when an unknown vector lies with-

in an overlapping region because the classifier assigns

the pixel into the first region it fits. Therefore, the

order in which the box filters are inspected biases the

results. The overlap is caused by sample distributions

that are similar in spectral characteristics and also

highly correlated. Distributions having a high covari-

ance, are poorly charact-rized by the parallelepiped

decision regions (Lillesand and Kiefer, 1987). Covariance

is the tendency of a pattern vector to vary similarly in

two or more spectral bands; thus, cluster distributions

4v.
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can appear elongated and often slanted. (the H' vectors

in figure 3). Positive correlation involves a dependence

in the training data in which high digital values in one

band are associated with high digital values in another.

Negative correlation takes place when the inverse occurs,

high values in one band tend to be associated with lo6,

values in the other. Negative correlation is illustrated

by the 'W' class in figure 3.

Classification rules based on decision regions described

by parallelepiped volumes are not sensitive to spectral

data that is highly correlated. Unfortunately, remotely

sensed data often exhibits covariance. The parallelepiped

is able to describe such a situation much better if the

multidimensional rectangle was modified into a series of

stepped rectangles (Figure 4). Although this may allevi-

ate some of the problems, another type of decision rule

may be more adept at describing spectral patterns of this

nature. Such a rule is a maximum likelihood classifier.
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2.4.3 Maximum Likelihood Decision Rule N
The maximum likelihood classification (Lillesand and

Kiefer,1987; Story et al., 1984) is based on statistical

parameters such as the mean vector and covariance matrix,

to estimate the training distributions for each land cover

class. This classifier can quantitatively evaluate both

the variance and covariance of the spectral data in vector

space because of the inclusion of the covariance matrix in

the decision rule.

The distribution of the pattern vectors in the training

clusters, for each class are assumed to be gaussian in

shape (smooth curve normal distribution). With this as-

sumption, the mean vector and covariance matrix can ade-

quately describe the cluster, as was previously explained

in section 2.2. With these parameters, decision regions,

for each class, are quantitatively described by a discrim-

inant function. Discriminant functions, unlike the paral-

lelepiped are probability density functions that are very

good statistical approximations of the shape of the sample

distribution in multidimensional space.

Iok%i
N.I



With the probability density function of any cover class,

we may compute the statistical probability of an unknown

feature vector, plotted in measurement space, of being a

m ember of that spectral 
category. In figure 5 the dis-

crininant functions for a few land cover types are illu-

strated in two dimensional measurement space by a 3

dimensional surface. The vertical axis indicates the

probability of a pixel being a member of a class. The

closer the feature vector plots to the center of the

distribution, the more probable that it is member of that

class. To classify an unknown pixel according to the

maximum likelihood rule, the algorithm calculates the

probability of that pixel being in all of the land cover

classes represented by training statistics. The feature

vector would then be assigned to the most probable class,

the one with highest probability. This procedure classi-

fies all the pixels in an image, unless a threshold is

established for the minimum probability that must be

satisfied before a feature vector is classified (for

further information on thresholds see section 2.4.4).

Each discriminant function defines lines of equal proba-

bility around the cluster center. In multidimensional

% %.
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space these ellipsoidal contours are hypersurfaces (hyper-

ellipsoids) that are located at equal statistical dis-

tances around the center. A two dimensional diagram illu-

strates these 'equiprobability contours' (Lillesand and

Kiefer, 1987) (Figure 6). These contours demonstrate the

sensitivity of the maximum likelihood approach in repre-

senting correlated data as compared to the rectangular

regions depicted by the box-filter.

2.4.4 Maximum Likelihood Classifier - Quantitative

The following section details the multivariate statistical

analysis of the maximum likelihood method in a more quan-

titative sense, according to Swain and Davis (1978). Its

intent is to inform the reader of the computational anal-

ysis that is involved in the classification of a given

pixel in an image.

Discriminant functions are probability density functions

for each land cover class, that are employed in a maximum
P
"P

likelihood decision rule to classify an image. If

functions gi(X), j = 1, 2, .. m, are a set of m discrim-

inant functions, one for each decision region, then the

NV
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following decision rule applies:

Classification rule: Let ci denote the ith class. Decide
that X e wi if and only if gi(X) Z gj(X) for all j = 1,
2,.. m.
(Swain,1977).

It reads: X belongs to class i only if the probability of

X being in i, estimated by the discriminant function, is

greater than the probability of it being in one of the

other classes.

In a univariate case discriminant functions for class i

are given by:

[I/ (x 2

p(xlw ) =----------- ----------- exp 1/2
i 12) /2 2

(2w) /2 a'. a

where exp(] = e raised to the power indicated.
Pi = is the mean value of measurements in class

i.
o 2  = is the variance of the measurements in

class i.

pi and a' 2 are the parameters to be stored that will

define the cluster for each class. Unbiased estimators

for these terms are:

S..~~~~~ % ~S% *-~5

~ .. ~ . 5..



28

q.
1 1L.= ZX~

1 q. j1 J=l

q.

"2 1 ^ 2
-. : 7f (x.- p.)q -X 1 P

1 j=l
(Fruend,1971)

where qi is the number of samples in class i.
xj is the jth sample.

Therefore, the estimated probability function for class i
is then;

2 1
x ) 1(x - P.)

p(x[w -- - -- - exp -1/2 - - - - - - - -

i 1/2 . ex^2
(2w) 0. a J

The univariate (one dimensional) case can be expanded into

a multivariate probability density function. But before

this is demonstrated, bivariate terms should be discussed

to indicate some of the multidimensional terminology.

The two dimensional bivariate normal density function is

given by a cumbersome equation (Swain and Davis, 1978), in

which the parameters pLij and aijk are calculated for each

set of two dimensional training set statistics to describe

the distribution.

where pLij = is the mean value of the data in channel j,
for class i.

aijk = is the covariance between channels j and k,
for class i.

'9
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The two dimensional case can be expanded into n-dimensions

and simplified in expression by vector/matrix notation. N

is equal to the number of spectral bands.

X2
X

represents the data vector. Each x represents a

registered digital value from each spectral band.

P' 12
pL 2

Ut =

LPi n I

represents the mean measurement vector for class i. Each

p represents the mean value for the dispersion of values

in each band for class i.

It

'SI.

I,

a.

SI



30

oi 1 01Gi12 . . . . o

0i21 i 22 . Oi 2n

ai n 1 ai n2 . . Oi n n

represents the covariance matrix for class i. The

diagonal elements define the variance of the samples in

each band, while each off diagonal element details the

covariance between two of the spectral bands for class i;

together they describe the shape of the cloud in

multispectral measurement space.

The multivariate density function is:

T -1p(Xl)2.) /- exp[- 1/2 (X-U.) X - (X - U.)]1. ( )n/21Z 1/2 1. 1. 1. K
(2w) Z

where lZi I is the determinant of the covariance matrix Xi

zi-X is the inverse of Zi , and (X-Ui)? is the

transpose of the vector (X-Ui). A

Ui and Ii are calculated by unbiased estimators.

%
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S1 q

p. Xl xJ =i,12, .. 2nq.i1"1q.

^1 qi^

(.- p.*( Xk- pGik =  .I(jl ij ) ki ik)

1=1

= 1, 2,..n
k = 1, 2,..n

where qi is the number of training samples in class i.

Now that the multivariate probability density function has

been detailed, one term in the maximum likelihood decision

rule is left to be discussed, the a priori probability.

The a priori probability "is the anticipated likelihood of

occurrence" for a certain class within the scene

(Lillesand and Kiefer, 1987); regarding some factor, such

as the percentage of area that is covered by each class,

for example. The a priori probability is a weighting

factor that permits land cover rarely evident in the image

to be weighted less during the classification process than

a cover type which is more prevalent.

The maximum likelihood decision rule: Decide X E ut if
and only if p(Xlwi)p(,i) > p(Xjgii)p(ci) for all j = 1,
2, .. m.

(Swain,1978)
w'

where p(ua) is the a priori probability for class i. The .

~ .a A j A
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discriminant function p(X ii)p(wn) also incorporates a

strategy to minimize the average loss over the entire set

of classifications (The Bayes optimal strategy) (Swain and

Davis, 1978).

The discriminant function that is expressed as a

multivariate density function, with the a priori

probability, now becomes:
e

P(X1 )P( ) M =.p(W.) exp(-1/ 2  (X-Ui)T : I (X-U.) I
(2) n/2Zil 1/2

A transformation of this equation into a simpler form is

gi(X) = log. p(wi) - log. IZi I - 1/2 (X-Ui)T Zi - 1 (X-Ui).

Only the quadratic term must be recalculated for each

class with every classification.

One difficulty is that this decision rule classifies all

objects in an image. In remote sensing some spectral

%
%.
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patterns do not belong to any of the classes described,

because of an analyst oversight in creating training sets

or because of insignificant training data. The classifier

can be designed to reject a low probability of classi-

fication by a technique called thresholding. A user

specifies a threshold that will guide the classifier in

rejecting probabilities below the designated value.

This maximum likelihood decision rule is widely used in

remote sensing applications. It can be used to classify

an image according to discriminant functions derived from

supervised training set statistics or training sets

created by an unsupervised clustering technique.

2.4.5 Box Preprocessing Decision Rule

Of all the classification approaches we have discussed

above, the box classifier was the most accurate in seg-

menting the image, often not classifying more than 50% of

the image. The maximum likelihood approach, however,

classifies all the pixels in an image, with reduced

accuracy, if no threshold value is stipulated. Maximum

likelihood approaches implemented without a threshold

%,%5
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value have the ability to misclassify areas that have not

been spectrally described with training set data. In

Story et al., (1984) a parallelepiped Bayesian classifier

was found to be the most accurate in classifying the whole

image when compared to the previous approaches mentioned.

In this study the box-filter was found to be 86.44%

accurate in the areas that were classified, the maximum

likelihood approach (bayesian) was 79.03% accurate in

classifying the whole image. The parallelepiped-box

classifier was 83.64% accurate in classifying all the

pixels in the image.

The parallelepiped-box classifier (Story et al., 1984)

performs a box-preprocessing operation on the data, and

those pixels that either fall outside the parallelepiped

regions or in areas where the boxes overlap are labelled

'undefined' and 'mixed' respectively. The box prepro-

cessor allows the analyst to specify a confidence interval

to adjust the ranges of spectral values to be used as

limits within each band of data. The confidence interval

involves the designation of a certain number of standard

deviations from the mean. The user then has the option of

reclassifying all of the 'undefined' or 'mixed' categories

,.J.



35

of pixels using a maximum likelihood classifier.

The box-preprocessing classification program available at

ERSC performs a maximum likelihood operation on pixels

considered 'mixed' and permits the user to designate how

the 'undefined' pixels should be treated. All the classi-

fications discussed in chapters 5 and 6, unless otherwise

stated, are segmented using this program and all

'undefined' pixels are labeled unclassified.

2.5 Unsupervised Clustering Methods

Unsupervised classification involves computer algorithms

which automatically analyze the spectral data and identify

the various classes that are present. In the supervised

process, clustered spectral data, representing information

classes, were identified by the analyst in a supervised

training selection process. Unsupervised clustering algo-

rithms inspect all the spectral data of the entire image

and aggregate similar feature vectors together to describe

the land cover categories of an image. The meaning of the

clusters is determined by the analyst after the image is

classified.
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Duda and Hart (1973) offered some basic reasons for using

unsupervised classification algorithms: 1) the collection

and labelling of large sets of sample data, from the

image, in the supervised training process can be surpris-

ingly costly and time consuming and 2) in the early stages

of the investigation it may be valuable to gain some in-

sights into the number and type of land cover categories

present, to assist in selecting sites for training the

computer.

There are numerous clustering schemes that have been

developed to identify separable spectral classes in

remotely sensed data. The research discussed in the

following sections is not intended to be an exhaustive

review of all algorithm developments, but it is a semi-

comprehensive outline of clustering methods.

Clustering is a method of aggregating spectral information

to represent the various information classes present in

the data. A common feature of all spectral data, is that

samples belonging to the same resource exhibit some simi-

larity among themselves and a dissimilarity with those

V~~~~~~~~A N..................... ..... -------~a%
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patterns belonging to another resource. For example, if

all the pixels of an image were plotted in vector space,

there would be numerous clusters of feature vectors pre-

sent. These clusters are the aggregation of similar fea-

ture vectors and may represent useful information classes.

Unsupervised clustering algorithms seek out and define

these clouds of data. This concept is the basic premise

behind the unsupervised separation of digital information

into its different classes.

There are basically two broad categories of clustering

techniques. One is based on the hierarchical (heuristic)

approach and the other is based on criterion functions.

The hierarchical approach is a method whereby sets of

rules (intuitions) guide the clustering, whereas in the

other approach, a criterion function is identified and

optimized in each iteration of the algorithm to cluster

the data. The hierarchical method can be divided up into

two primary groups, the agglomerative approach and the

divisive approach. In clustering according to criterion

functions, there are numerous functions developed and

optimized for clustering. The following sections will

discuss many found in the literature review.
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2.6 Similarity Measures

A cluster is described by an aggregation of feature

vectors that are spectrally similar. To cluster data it

would seem obvious that a similarity metric must be iden-

tified. In multidimensional measurement space a good mea- ,a

surement of similarity (or dissimilarity) between two

samples could be the distance between the two vectors. If

this assumption is true, then the distance between sample

vectors of the same resource would be less than the dis-

tance between pattern vectors that are not of the same

resource. Maktav (1985) implements an unsupervised clas-

sification algorithm with a Euclidean distance criterion.

Euclidean distance is a point to point distance metric and

is utilized to measure the distance between two n -

dimensional pixels, image vectors, y and z.

n PJE 2 1/2
E (Z-Z. ) )

i=l 1

Euclidean distance is the combined sum of the distance

between the points in the individual bands. Maktav's

algorithm is based on grouping pixels into the appropriate

clusters based on the Euclidean distance between them, as

-, -
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a measure of similarity. Maktav does not make it clear

where the estimates for the initial means come from to

begin the clustering process.

2.7 Criterion Functions

A few of the criterion functions that Duda and Hart (1973)

discusses are the sum of squared error criteria, related

minimum variance criteria and the scatter criteria.

The most widely used criterion function is the sum of the

squared error (variance) criterion. It is defined by the

equation

c
2

ic x iO
i=l xeX.

1

For cluster Xi the mean vector mi is the best represen-

tation of the samples in the distribution in the sense

that it minimizes the sum of the squared lengths of the

error' vector x - mi (Duda and Hart,1978). The value Jc

depends on the variance of the samples; how close they are

aggregated. 'c' is the number of clusters that are iden-

tified. The optimal partitioning minimizes Jc, the total

squared error incurred by representing n samples xi ...
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xn, by c cluster centers mi ... mc. Clustering of this

type is called minimum variance partitioning.

The related minimum variance criterion eliminates the need

for mean vector values found in the calculation of the

minimum variance partitioning.

c
J= 1/2 Zn i s

c i=l11

where

Si = T1 1 x, H2
2

n. xeX. X E Xc

This criterion involves Euclidean distances between

samples in the individual clusters as a measure of simi-

larity; Jc is extremized (minimized) when the distance

between the samples in the distribution are minimized.

The scattering criteria are a class of criterion functions

based on the scatter matrices used in multiple discrim-

inant analysis: scatter matrices, trace criterion, and

determinant criterion.

The scatter matrices are equations representing the

within-cluster scatter and the between-cluster scatter.

ol'. % %
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The within- and between-cluster scatter depend on the

partitioning that takes place; minimizing the within

scatter will tend to maximize the between cluster scatter.

The other two criteria that involve the scatter matrix of

the distribution, deal with the size of the cluster. The

trace and the determinant criterion entail minimizing the

scalar measurement of the size of the scatter, having an

implication on the variance of the distributions.

2.8 Iterative Optimization in Clustering

For optimal partitioning of the data into unique spectral

classes the above criterion functions must be extremized.

One approach to optimal partitioning is iterative optimi-

zation (Duda and Hart,1973). The process involves sepa-

rating the data into initial partitions, and moving

samples from one partition to another in order to optimize

the values of the criterion function describing the clus-

ters. This process has been related to 'hill climbing' in

general, different starting points (initial partitions)

can lead to different solutions (Duda and Hart,1973).
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In the literature, many clustering techniques involve mul-

tiple iterations, such as in Armstrong (1977). The algo-

rithm takes some initial guesses as to where the initial

cluster centers are located and pattern vectors from the

image are then merged to the nearest cluster. After each

iteration the means are recalculated according to the new

distributions. The process is repeated until a stable

assignment of pixels is achieved, which is attained when

the mean values between two consecutive iterations fall

within a tolerance determined by the user. There is no

guarantee that the clusters would not overlap in mea-

surement space. So a distance measurement was devised to

examine the separability of the derived clusters.

1 (x - x

D. I ik
Sj n a. aj

k=l ik k

Dij is the statistical distance between the clusters i and

j. 'x' and 'a' are the means and standard deviations for

these clusters, respectively, and 'k' indicates the dif-

ferent spectral bands of the image. ISODATA (Story et

al., 1984), ISOCLS (Werth, 1981) and CLUSTER (Colwell,

1984)are acronyms for clustering algorithms that take on

the same basic approaches as that discussed above by

le"5
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Armstrong; clusters grow around seedpoints (initial clus-

ter centers) by aggregating pattern vectors to the nearest

cluster. This style of clustering has also been called

the 'K means' method (Gowda, 1984; Lillesand and Kiefer,

1987).

The Coalescence Clustering Algorithm (Ince, 1981) is

different from previously mentioned techniques in that

data points are clustered based on the attractive force

between them. The clustering takes place in feature

space, that is the algorithm operates on a multidimen-

sional histogram array of all the image pixels for seg-

menting the data points into spectral classes. The

attractive force is a gravitational one with a range

limitation on attraction of ±r cells in each dimension.

tr' is a parameter that the user must specify, and

identifies the range of the neighborhood to be considered

for the force calculations.

m h.i h k
Fi -=2 i x k.

2b

k~l Sik

hi is the frequency, number of occurrence, for that cell,

or pattern vector i. Sik is the Euclidean distance be-
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tween cells i and k. F is the net force on cell i due to

all the cells in its neighborhood. K is the total number

of data points in the neighborhood of cell hi.

ai = Fi / hi

ai is the acceleration on cell i due to all the cells in

the neighborhood. If the acceleration is greater than a

designated threshold value then the mass (frequency) in

that cell moves into the neighboring cell in the direction

of the acceleration, emptying the original cell. At each

iteration the histogram array is modified and the merging

process ceases when all non-empty cells are beyond the

neighborhood r of each other.

Another different clustering technique involves a con-

vexity testing method (Vasseur and Postaire,1980). The

convexity testing method is a mode (peak) detection pro-

cedure, since it assumes that in a multimodal probability

density function (such as in a multidimensional histogram

of all the digital data in the image) each mode corre-

sponds to one cluster. Modes can be characterized by the

convexity of the underlying probability density function.
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Mode seeking procedures identify convex areas of samples

which are considered to be the nuclei of the individual

classes, of which the remaining data are merged.

Similar clustering schemes using multi-dimensional histo-

grams have been researched by Goldberg and Shlien (1977),

Wharton (1983) and Leboucher et al. (1976).

In Goldberg and Shlien (1977) a 4 dimensional histogram (4

spectral bands) is used in clustering the data. It is a

table listing the frequencies of the pattern vectors of

the image. Peaks in the histogram (vectors with a high

frequency of occurrence) are assumed to be associated with

different resources. The method involves isolating these

peaks and merging the associated vectors to create uni-

modal clusters. A threshold is chosen to divide the

intensity vectors of the image into two sets, those that

occur with at least this threshold frequency, and those

that occur with less. The former group is separated into

clusters corresponding to the peaks. The latter group of a,

vectors are assigned to the closest peak.

I
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The peaks are delineated by grouping those pixels, of the

first group, that occur at a frequency equal to or greater

than the threshold according to their connectedness. Pat-

tern vectors are said to be connected if the intensity in

each of the bands do not differ from one another by more

than one. After the peaks are identified, the remaining

pixels in the second group are assigned to a cluster

according to the 'connected to a cluster' rule. Any

vector remaining unclassified is then merged with a

cluster by a Euclidean minimum distance rule.

Wharton (1983) follows four steps in his approach in

identifying the peaks in the multi-dimensional histogram.

First, the algorithm computes a list of neighboring

vectors in the histogram. Second, after examining the

list of neighbors a directed link or pointer connects each

vector and its immediate neighbor having the maximum

positive density gradient. The gradient is calculated by

the difference in the two vectors divided by the distance

between the two vectors. The distance measure is the city

block measure

k
Dist (x,y) = Z I x. - y. I-
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k is equal to the number of spectral bands. In the third

step, the cluster centroids are identified by locating the

peaks in the histogram. A peak is defined to be a vector

whose frequency count is greater than the frequency count

of all its neighbors. A peak will form a nucleus of which

other vectors can be grouped. In the fourth step, the

directed links, discussed before, are used to merge the

remaining non-peak vectors to the appropriate cluster.

The directed links in theory should form a path leading to

the centroid of the cluster. Because these paths are

directed toward higher density (frequency) neighbors,

adjacent clusters should be separated by low density

valleys. All vectors in the paths should be assigned to

the proper cluster thus delineating unimodal distributions

from the histogram.

2.9 Hierarchical Approach

As was stated before, the hierarchical approach to clus-

tering can be divided into two groups: the agglomerative

and divisive methods. In the agglomerative method, each

pattern vector is considered a cluster center and based on

certain rules they are interactively merged together to

.5
-5
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form larger clusters. Whereas, the divisive method starts

with a single cluster, a (multi-dimensional) distribution

of all the data in the image, and splits it into smaller

more meaningful clusters. The computation involved in the

agglomerative procedure is usually simpler; however, if

there are many pattern vectors and the analyst is only

interested in separating a few clusters, the divisive

method would be more efficient (Duda and Hart,1973).

2.9.1 Agglomerative Method

Id

The multiple iteration clustering algorithms mentioned

above by Armstrong (1977) and others, such as ISODATA,

ISOCLS, and CLUSTER, can all be considered agglomerative

techniques. These clustering methods start out with

initial estimations for the cluster centers and group

samples to these clusters according to similarity based on

a distance measurement. Two more examples of agglomer-

ative methods are the nearest neighbor and the furthest

neighbor algorithms (Duda and Hart, 1973). The theories

of these two techniques are explained in the following

paragraphs.
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The nearest neighbor algorithm connects the nearest

neighbor data points according to a minimum distance

measurement function. Since only distinct clusters and

vectors are linked, the resulting clusters are never

closed loops but grow in an open-ended fashion, as a tree.

Because the algorithm uses a minimum distance metric it

generates what is termed a 'minimum spanning tree' (Duda

and Hart,1973). Sometimes a few points are positioned

such that their presence causes two clusters to be linked

forming an elongated cluster, a 'chaining effect' (Duda

and Hart, 1973). This can be advantageous if the clusters

are elongated.

In the furthest neighbor algorithm a maximum distance

function is used between points and the growth of

elongated clusters is often discouraged. This method

creates clusters with all the samples connected, unlike

the nearest neighbor algorithm that produces chains. The

furthest neighbor approach increases the diameter of a

cluster as little as possible with each clustering itera-

tion. A diameter is defined as the largest distance be-

tween points in the cluster. "True clusters are compact

and roughly equal in size" (Duda and Hart,1973).

V
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Processes involving distance functions based on the two

extremes, maximum and minimum, often tend to be sensitive

to "mavericks", "sports", "outliers" or "wildshots" (Duda

and Hart,1973). The average and mean distance functions

discussed in Duda and Hart (1973) are natural compromises

to this problem, in which the structure of the mean

function permits it to be the simplest to compute.

Besides an iteration technique explained above, Armstrong

(1977) also describes a 'chain algorithm' which implements

a nearest neighbor agglomerative method. Samples are

joined to clusters based on a distance measure for simi-

larity. The distance between the points must meet an

analyst-defined threshold vplue before it can be

considered a cluster.

2.9.2 Divisive Method

An example of a divisive approach is presented by

Chandrasekhar (1983), in which a single cluster is

continuously split with successive iterations. The

*furthest two points used in the measurement of the

,1 4
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diameter of the initial cluster are chosen as cluster

centers. Pattern vectors are then assigned to these two

centers according to similarity measures. The cluster

with the largest diameter is then split by the same

procedure mentioned above. This process is repeated until

the desired number of clusters is obtained. Euclidean

distance was implemented to measure similarity.

2.10 SEARCH Algorithm

Most of the unsupervised clustering processes above

simultaneously classify the digital images during the

clustering operation. Very few methods, such as the

SEARCH algorithm presented by Pearson (1977), cluster the

data yielding statistical parameters describing the

spectral classes. These parameters as described before,

represent training information that can be implemented

into a statistical classifier (such as maximum likelihood)

to segment the digital image.

The SEARCH algorithm's approach to clustering is similar

in nature to the agglomerative heuristic processes, but

instead of merging individual vectors to cluster, a group

IF .
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of similar pixels is aggregated to a cluster center.

Windows, 6 pixels by 6 pixels in dimension, are sequen-

tially analyzed in the image as possible training samples

(Figure 7a). Windows that appear to be homogeneous are

stored as training samples, or signatures. Once the first

50 signatures are found the 2 clusters with the smallest

pairwise divergence are merged reducing the total number

by one. The next signature identified (Figure 7b) is

considered the 50th cluster and again the 2 most similar

clusters are merged according to a pairwise divergence

metric. This process continues until all the 6 x 6 win-

dows in the image are analyzed. The resulting clusters

are merged down to the analyst-defined number of clusters

by a pairwise divergence calculation. The pixels in a

window are considered to be homogeneous by meeting the

user designated limits on lower and upper bounds of the

standard deviation for each spectral channel. The lower

bound limit avoids extremely peaked clusters that may have

high divergence when merged with another cluster. And the .-I

upper bound insures a homogeneous cluster.

I
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2.11 FINDSET Algorithm

The FINDSET algorithm is the unsupervised clustering algo-

rithm presently used at the Environmental Remote Sensing

Center (ERSC) at the University of Wisconsin - Madision.

It is based on the SEARCH algorithm detailed in the

previous section. FINDSET identifies a maximum of 50

training sets, or clusters, in an image. The algorithm

looks at 3 x 3 windows in the image to identify homogenous

spectral clusters with a user defined variance threshold.

The variance threshold places an upper bound on the

maximum sum of the variance of the spectral bands of the

data. If the sum of the variance exceeds this, it is not

considered homogeneous. The clusters are merged by the

following statistical distance metric

2
k (x - x2 ) 1/2

d 1 2 1

n=l aI + a22 2 V

The n is the number of spectral bands. Symbols 'x' and

aO' are the means and standard deviations of the indicated

clusters. This measure is similar to other statistical

similarity measures that have been discussed previously.
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Possible Problems with FINDSET

Within the last few years the researchers at ERSC have

recognized some possible problems with the FINDSET

algorithm.

One is the potential inability to gather spectral statis-

tics for all the land cover classes contained within an

image, creating a bias with respect to the section of the

image in which the initial 50 clusters are found. The 3 x

3 window begins searching for clusters in the upper left

corner of the image. If the first 50 clusters are found

in the upper portion of the image and this section

contains one dominant land cover type, such as forest or

water, then many of the training sets resulting could be

dominated by the statistics from this cover type. This

bias may prevent the creation of training sets for other

land cover classes in an image, such as built-up areas or

water, that may be located elsewhere within the image. It

is also reasonable to assume that homogeneous clusters

describing other land cover classes could be mixed with

the forest training clusters, for this example, by the

minimum distance calculation, contaminating the statis-
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tics. In short, there could be a bias towards the first

50 clusters identified and a possible creation of mixed

training sets.

The above discussion about clustering bias involves the

analogy stated in Duda and Hart (1973) about "hill

climbing" (see section 2.8). Different starting points

(initial partitions of the data) can lead to different

solutions. "If an unfortunate sequence of samples is

encountered, the error in classifying the unlabeled

samples can drive the classification the wrong way"(Duda

and Hart,1978).

Another problem associated with "hillclimbing", discussed

above, is that an arbitrary scheme like this could result

in the initial cluster centers being outside the clouds of

the data points that represent the real sample

(Armstrong,1977). This could result in mismerging, a

contamination of the clusters with resources that have

similar spectral characteristics. Story et al. (1984)

found that mismerging between water and shaded forest is a

possible scenario as a result of the misidentification of

the initial cluster centers and subsequent mismerging of
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spectral data.

Another difficulty involves the resolution of the remotely

sensed data classified. Resources that are less than 3

pixels in size, length or width, may be inadequately

trained on by the clustering algorithm and representative

training statistic never acquired. Spectrally homogenous

3 x 3 windows are delineated and analyzed as training

information. If an earth resource is digitally repre-

sented by less than 3 pixels, it would not fill a 3 x 3

window and a good training sample may never be acquired.

This could happen to roads, that are linear features,

comprised of 1 or 2 pixels, in satellite images when the

resolution of the data is 30 meters, for example. However

if a color infrared aerial photograph was digitized at a

spot size that would allow roads to be represented by 4 or

more pixels, adequate training samples could be acquired

in the FINDSET approach. This problem was also described

in literature by Story et al. (1984) when he discussed a

similar algorithm.

The issue of statistical independence between adjacent 3 x

3 windows, also referred to as autocorrelation between

"del.
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adjacent windows (Ahearn and Lillesand, 1986) is another

discrepancy that may be present in the FINDSET algorithm.

Ahearn demonstrated that autocorrelation is more prominent

between sample windows touching at the sides rather than

those touching at the corners. The FINDSET algorithm

possibly reduces the validity of the statistical calcula-

tions by comparing adjacent windows that may not be inde-

pendent samples.

Another difficulty that can be attributed to many unsuper-

vised clustering algorithms pertains to the requirement of

an a priori estimate of the number of clusters that should

be found in the image. Unsupervised processes may require

several attempts to request the appropriate number of

classes that produce an informative classification

(Armstrong, 1977).

2.12 Choosing a Classification Algorithm

An appropriate concluding section on the literature review

of classification techniques might be a discussion on the

advantages and disadvantages of a classification algorithm

that should be known before the analyst chooses one for a

1%
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specific application. There are 4 points of concern that

were outlined by Story et al. (1984): 1) the accuracy

that can be attained with a given technique, 2) the 'ease

of use', in other words, how "user friendly" is the system

3) the amount of input information that the analyst must

supply, such as training set statistics or a variance

threshold and 4) the 'CPU' time, or the time it takes to

run the program on the digital image of interest.

2.13 Post-classification of Remotely Sensed Data

In the literature, post-classification processes seemed to

involve two applications: 1) the reassessment of classi-

fied images for monitoring change detection and 2) post-

classification spatial smoothing algorithms. Neither

approach is similar to the automated reclassification

according to ancillary data as developed in the Second

Stage reclassification approach discussed in section 4.6.

Nor did any of the research involving post-classification

operations, in the literature, involve a similar process.

In monitoring change detection, post-classification

involved multitemporal analysis (Goldberg et al.,1982;

'
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Weismiller et al., 1977; Wickware and Howarth,1981).

Digital images from two different dates were independently

classified using automated techniques to segment the

identical number of classes. In a post-classification

approach the two classified images were compared and the

changes recorded. Most of the time the classes monitored

were visually analyzed pixel by pixel, but other times an"

automated comparator was implemented. The comparator was

a processing program that compared the two classified

images producing resulting images that indicated the areas

of change. Also contingency tables identified the changes

that occurred and the nature of the changes in the output.

P%,

Post-classification spatial filtering has been implemented

to smooth classified images, thereby possibly increasing

the classification accuracy (Moreira et al., 1986). In

some areas land cover classifications resulted in the mis-

classification of some pixels in what should be homoge-

neously classified regions. A spatial filtering operation

reclassified many of these anomalously labelled pixels,

reducing the overall misclassification. In spatial fil-

tering operations, windows of the data are accessed in

various sizes and numerical calculations are applied. For

7 ,
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classified images a majority filter is often used. This

type of algorithm considers all the classified pixels in

the window and determines which label has the highest

frequency of occurrence and assigns that value to the

center element of the window. This operation continues

throughout the image until the whole image is processed.

Spatial filtering implemented by Moreira et al. (1986)

computed a threshold for each window that required the

majority label in the window to meet a required frequency

threshold before the central pixel was changed. Spatial

filtering, in general, deemphasizes the high frequency

components of the classified image, often referred to as a

'salt and pepper appearance' or noise (Lillesand and

Kiefer, 1987). Low frequencies are deemphasized yielding

an image that is smoothed in nature.

2.14 Hybrid Classifiers

The Semi--Supervised clustering analysis can be considered

a hybrid approach to segmenting multispectral data. In

the literature hybrid clustering and classification algo-

rithms have been employed in numerous research projects.

.'
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Hybrid classifiers are classification techniques that

involve both supervised and unsupervised analysis or any

combination of different classification methods. Moreira

et al. (1986) used unsupervised spectral classification

technique with a post-classification spatial filtering

process to increase the accuracy of wheat area estimates.

In Story et al. (1984) the ISODATA algorithm requires the

analyst to identify the initial cluster centers, in a

supervised fashion, before it groups the remaining data to

similar spectral classes in an unsupervised manner.

Swain and Davis (1978) summarizes a hybrid procedure for

analyzing remotely sensed data. The process begins by

using an unsupervised classifier to enhance the raw data

by deriving some useful classes. The results of this

classification assist in a supervised training of the

area. After a supervised acquisition a cluster separa-

bility analysis is implemented to derive unimodal training

set distributions. The statistical training information

is then implemented into a maximum likelihood classifier

to segment the digital image.

p
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The first stage of the Semi-Supervised Two Stage classifi-

cation technique involves a clustering algorithm, whereas

the second stage involves the application of ancillary

data in a post-classification reclassification routine to

increase the accuracy of the spectral classification.

Ancillary information has been implemented in image seg-

mentation with various degrees of success.

I.
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Chapter III

Ancillary Data in the Classification Process

3.1 Introduction

This chapter discusses the application of ancillary

information in the automated classification process.

Ancillary data can be defined as additional information

that is accessed to assist in making or justifying a

quantitative decision or analysis. Ancillary data that is

implemented into the classification process is any digit-

ally amenable data that can be helpful in describing the

land cover classes of an image. There are many different

types of digital ancillary data. For example, texture,

digital topographical information (DEM), ratioed images,

vegetation index ratios, digitized map overlays, digitized

soil maps, and geographical information data bases, just

to name a few. This chapter will detail the application

of texture in the classification process, to support the

reasoning for the author's reclassification approach

discussed in the next chapter.
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3.2 Texture

Texture is a descriptive attribute that is numerically

quantified for applications in digital image processing.

Texture is an innate property of all objects that are

around us. Visually, every surface has an arrangement of

tonal values. The texture of surfaces can be qualita-

tively described as rippled, mottled, irregular, limited,

striated, etched or any of a myriad of other terms.

Essentially, the textural properties of objects are not

independent of the tonal variations. Tone refers to the

brightness or darkness of a surface. Texture can be

defined as an arrangement of an elementary pattern,

variation in tone, that is present over an area larger

than the pattern itself. The photo interpreter relies on

the combined principles of texture ard tone to analyze

aerial photographs. Texture is considered a useful

descriptor in manual and automated land cover classifi-

cations, for just as surfaces with uniform spectral

reflectance are considered to be objects, regions with

homogeneous texture may also be considered objects.

N.
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Texture has been implemented in automated classifications

to segment classes of interest of a digital image (Jensen

and Toll, 1982; Shih and Schowengerdt, 1983; Hsu, 1978).

Texture must be represented numerically to be employed in

an automated classification process. Quantitatively,

texture is the local spatial tonal variation within an

image; also termed the coarseness of the data. A rough

texture, high spatial frequency, involves large deviation

of total variance; and smooth texture, low spatialI

frequency, minimal tonal variation in the data. These

spatial frequencies are determined numerically with a

texture algorithm. Texture algorithms are often area

calculations indicating local tonal variance around an

image point, based on a mathematical operation on a window

of pixels. A window is an m by m array of pixels, where m

is the size designated by the analyst.

3.3 Texture Algorithms

In the literature, there are basically two approaches to

texture algorithm development: statistical analysis and N
the Fourier-based approach. In a study by Weszka and

Rosenfeld (1975) it was concluded that statistical fea-

I
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tures perform much better than Fourier-based procedures

for generalized land cover mapping. Since, the consensus

from the literature is that resource textures are more

appropriately modeled by statistical measures, the Fourier

transform approach will not be discussed in this chapter.

Statistical Analysis of Texture

Statistic analysis of texture can be divided into two

levels of development: 1) the first order statistics in

spatial domain and 2) the second order grey level statis- "

tics in spatial domain.

First order textural statistics are derived from neighbor-

hood calcilations. Local statistical values such as mean,

variance and standard deviation can be computed for the

pixels in a window that sequentially passes through the

image. These statistical values produced for each window

are assigned to the center pixel of the window, resulting

in a textural image of textural measures for each pixel

based on the tonal variation of its neighbors. Variance

can be calculated for a matrix of pixels (window) by the

following operation,
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2

i 1 (s. j

This formula is called 'variance with respect to the

center' or 'variance with respect to the average', where s

can either be the value of the center pixel of the window,

or the average of all the matrix elements, respectively.

'i' and 'j' indicate row and column addresses for the

neighboring pixels of the window.

Difference methods also indicate local textural

properties. There are three different operations:

horizontal, vertical and diagonal.

The horizontal algorithm compares the tonal variation on

each side of a given pixel according to the given

equation,

Th (r,c) = I s(r,c-l) - s(r,c+l) I.

s' is the tonal signal at each row (r) and column (c)

pixel address in the window, center pixel being s(r,c).

The vertical method compares the variation above and

below, relative to the image, a pixel with the equation
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Tv (r,c) I s(r+l,c) - s(r-l,c) I.

The diagonal approach compares the tonal variation of the

neighbors at the corners of a given pixel by the equation,

TdI (r,c) = s(r+l,c+l) - s(r-l,c-l)

or

Td2 (r,c) = I s(r+l,c-1) - s(r-l,r+l) I-

The diagonal computation is directional as well as

diagonal. Unfortunately, the difference methods are often

more of an indication of edges in a scene than texture.

Texture transforms are another approach for local measures

that can be considered first order statistical operations

(Hsu,1978; Irons and Peterson,1981). Many of the textural

transforms proposed by Hsu and Irons are more statisti-

cally rigorous than the ones mentioned above. Hsu de-

tailed 17 local descriptors in which four operations

evaluated the four central moments (mean, standard devia-

" %'' "' " " "" .' m .-
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tion, skewness, and kurtosis) of a the distribution of

grey levels in a 3 x 3 window. Various others were dis-

cussed, such as mean contrast grey level differencing

among nearest neighbors, and a measure of the mean above

and below 3 datum planes in the data: 50, 100 and 150.

Irons developed several more descriptors on the basis of

Hsu's works that involved differencing of the maximum and

minimum values for the grey level distributions, and also

the equation discussed above involving variance were

embellished through normalizing and maximizing and mini-

mizing operations which modified the equations.

The other group, termed second order grey level statis-

tical measures, base their higher order operations on

grey-tone spatial-dependence matrices, computed from

various angular relationships and distances between

neighboring resolution cell pairs in the image; also

refereed to as nearest neighbor grey-tone spatial-

dependent matrices (Haralick et al., 1973; Haralick and

Schanmugam, 1974). Each texture feature is derived from

these angular relationships; close related measures of the

matrix's unnormalized frequencies quantized to 450 inter-

vals. Appendixes in both of Haralick's publications have %
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the algorithms for 28 textural features. Wiersma and

Landgrebe (1976) review four of Haralick's texture

measures in closer detail: angular second moment,

contrast, correlation, and entropy.

3.4 Texture Implemented in the Classification Process

Texture is considered as another band of digital infor-

mation when implemented with spectral data in generalized

land cover classifications. For example, if 3 spectral

bands and a texture image were used, the training sets

statistics resulting would be represented in 4 dimensional

measurement space. Spectral and textural information are

then used simultaneously in a classification process that

accesses the image pixel by pixel. This is where texture

and spectral information differ regarding the relative

resolution of each. While each spectral pixel value

presents information about its own spectral reflectance,

each texture value, of an individual pixel, is the result

of an area calculation measuring the tonal variations of

its neighbors. Each textural value is a consideration of

an area of the spectral data and has a relatively larger

resolution significance.
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The neighboring pixels, composed of the window could span

land cover class boundaries. Land cover borders can and

are misrepresented by texture. As the window moves over

the boundary, the combined textures from each land cover

creates textural heterogeneity and often misleads the

calculations causing a smearing of the textural infor-

mation over the land cover interface. This is analogous

to the mixed pixels in spectral data, but it depends on

the window size and can be much more severe. Such

'boundary smearing' is not permissible for detailed

digital land cover classifications when it is precisely

the boundary between the cover types that the analyst is

trying to discern (Jensen,1979). The smearing of the

boundaries is a function of the size of the window. Hsu

(1978) selected window sizes of 3x3 pixels rather than 5x5

for generating his final decision maps because of misclas-

sifications along the land cover boundaries. In Jensen

(1979), use of a variance coding calculation of texture

distorted class boundaries and decreased classification

accuracy, especially at the land and water interface.

Problems in classifications could also result when a land

cover class is smaller or narrower with respect to the
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window size (Shih and Schowengerdt, 1983).

Selection of the size of window is also dependent upon the

resolution of the image. High resolution imagery can have

more spectral variability per unit area than a similar

scene with lower resolution. Therefore, there could be a

significant amount of textural information in a small

window in high resolution images as compared to the same

window size in an image with a larger resolution ground

cell. This is indicated in a study by Irons and Peterson,

(1981). Using various textural measures, generated by"-

textural transforms similar to Hsu (1978), Irons classi-

fied Landsat Multispectral Scanner (MSS) image data which

has a resolution of 79 x 79 meters. Hsu classified

: digitized high and low altitude black and white aerial

photographs at resolutions of 17.3 x 17.3 meters and 2.67

and 2.67 meters respectively. Using the same window

sizes, Irons concludes, "high resolution remotely sensed

data may result in more useful information for the

thematic mapping of land cover." Textural patterns-

evident in low resolution data may be larger than the

standard 3 x 3 or 5 x 5 windows implemented in the i

reviewed texture research. Low resolution images may

'
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require larger windows to analyze a significant amount of

the repetitious pattern, if it is present, for its tonal

variation; this unfortunately, inevitably increasing

textural boundary smearing.

Another problem could be the assumption that an individual

land cover is represented by a homogeneous texture

pattern. Certain land cover types could contain several

different textures or textures similar to other classes

(Shih and Schowengerdt, 1983). For example, texture may

be very efficient at detailing the continuous texture of a

forest canopy, but the texture for an urban land cover

class may not have as consistent and continuous a texture

throughout the class. If this textural information is

implemented as a fourth dimension in the multivariate P

statistical training set data, inconsistent texture values

for the urban area may contaminate the unimodal multi-

variate probability density function of a perfectly good

training set. Although results from Jensen's (1982)

classification of certain areas on the urban fringe, have

been very promising, it is unclear how many unsuccessful

projects have not been documented. In general, texture

for urban areas is not as predictable as that for a forest

*' % ''5-!-s. S '% Sp ~ ~ ~ ~ .4
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canopy. The converse of this argument is the potential

advantage of textural information when classes are spec-

trally similar but are texturally distinct (Shih and

Schowengerdt,1983).

There have been many studies involving land cover classi-

fications using only textural information and the combined

spectral and textural information. From most of the

studies it is evident that textural data by itself is not

as successful as the combined information. And often it

has been found that textural information, when compared to

spectral-only classifications, has been selectively ac-

curate in describing only some cover types of an image

while failing to adequately describe others.

Haralick and Schanmugam (1974) segmented a Landsat MSS

scene using texture-only with a classification accuracy

according to test samples of 67.5%. Spectral-only was

more accurate with an assessment of 77%. The spectral-

texture classification resulted in a classification

accuracy of 83.5%. Jensen and Toll (1982) found thaI

combined spectral and textural data provided ruu .

information in describing cover types in an m,,-
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However, as mentioned before, not all classifications

involving texture analysis are so successful. Irons and

Peterson (1981) did not offer a quantitative assessment of

accuracy in their results, but did state that the various

combinations of the texture transformations failed to

provide useful texture classes, and that this sharply

contrasted with Hsu's (1978) success. It should be noted

that the classifications that were done by Hsu and Irons

were texture-only.

3.5 The Benefits of Texture Measures

A benefit inherent in textural measures is that it can be

derived from the original spectral information through

algorithm transformations. A question is then posed,

which spectral band should be selected to generate the

most descriptive textural measures. In many instances in

the literature the red spectral band (.6 - .7 pm) was

chosen (Haralick and Schanmugam,1974; Jensen,1979;

Wessman,1984). The red wavelengths are selected because

they delineate boundaries between natural and manmade

features; primarily because the red channel is a major

chlorophyll absorption band. Red light is absorbed by
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photosynthetically active vegetation (Wessman,1984).

3.6 Selective Contribution of Texture

Texture has been implemented simultaneously with spectral

data for classifying all the land cover in an image and

also certain select land cover classes of interest.

Textural analysis has been used for classification of

selected land cover within images. In Shih and

Schowengerdt (1983), texture was implemented to discrim-

mnate between geologic classes that have spectral overlap

but are texturally distinct. Such classes were varnished

bedrock slopes and desert pavement, and also lightly

covered bedrock and alluvial surfaces. In Jensen and Toll

(1982) texture was used to detect five different levels of

residential land-use development at the urban fringe. In

the cited literature, although the whole image was classi-

fied with the assistance of textural information, only

select land cover types of interest were evaluated in the

experiments. It is not clear in these studies whether

texture was effective in classifying all cover types in an

image. Wessman (1984) postulated, from her results, that

AL_(
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the contribution of textural information is selectively

better for classifying some classes than for others. An

assumption could be made, from the previous research, that

texture may be more useful when it is implemented in a

discriminant manner, for a specific purpose.

The selective contribution of texture in classifications

and the intent to classify certain cover types with

increased accuracy using texture, are the basic reasons

for the investigation of a different way to implement

ancillary data in a second stage post-classification

approach. A post-classification introduction of texture

to reclassify an image in a discriminant manner is

discussed in the next chapter.

3.7 Alternate Ancillary Data

Other ancillary digital data bases mentioned at the begin-

ning of this chapter could also be useful in image segmen-

tation, but are seldom implemented. For example, vegeta-

tion index ratios are mostly used in vegetation analyses

and change detections studies as an estimation of biomass

present in the land cover (Tucker, 1979). Vegetation
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index ratio equations involve the red and near infrared

spectral bands of a multispectral image: 1) normalized

ratio (IR - Red / IR + Red), 2) transformed vegetation

index [ sqrt (VI + 0.5)], or 3) a simple ratio (IR/Red).

Forest land cover and various gradations of vegetation can

be level sliced from a vegetation index ratio image.

Vegetation index ratios are derived from the original

spectral data, and could also possibly be more beneficial

in automated classification when implemented in a post-

classification approach.

Shih and Schowengerdt (1983) discussed the use of spectral

band ratios in classifications. As with the vegetation

index ratios, these ratios can delineate certain features

of interest in an image. Therefore ratios could be imple-

mented to verify or reclassify a spectrally classified

image, a technique detailed in chapter 4.

Geographic information system data bases are digitally

amenable data that could also be utilized in a discrim-

inant manner in classifications.

0
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A method which implements ancillary data in a discriminant

manner is detailed in the following chapter.
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Chapter IV

Semi-Supervised Two Stage Classifier

4.1 Introduction

This chapter discusses the development of a two stage

Semi-Supervised classification technique. The proposed

Semi-Supervised clustering algorithm combines the advan-

tages of an unsupervised method with the direction

(guidance) attributed to a supervised approach.

.The Semi-Supervised Second Stage classifier revolves

around two central ideas. First is the creation of a

Semi-Supervised clustering process that requires initial

guidance from the user. Second is the development of a

post-classification method with the capability to access

useful information from ancillary data, such as texture,

to assist in reclassifying certain cover types in an an

image.

Although the title implies that these two processes are

sequential in application, they are not. The Semi-

Supervised approach does not have to implement a reclassi-

fication; and the post classification does not require a

4..' ' ~ q ~ .~ ~ . . - S ~ I*%*%~* .A
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spectral classification that results from a Semi-

Supervised process.

The combined classifier is a complete process involving:

1) A clustering technique (Semi-Supervised)
2) Intermediate step - Maximum Likelihood

classifier or a Box-Preprocessor Maximum
Likelihood Classifier

3) Post-classification acquisition of
Second Stage ancillary information

4.2 Design of the Classification Technique

The classification process is composed of two stages.

First, training sets are identified with a Semi-Supervised

clustering scheme. These training sets are used by a

maximum likelihood or a box-preprocessor maximum likeli-

hood classifier to spectrally segment the scene.

Secondly, a Second Stage of digital information is

introduced through a technique that integrates ancillary

information in a discriminant manner to assist in

increasing classification accuracy of a scene.
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4.3 Part One : Semi-Supervised Clustering

The process begins with the analyst designating relatively

large training "areas" (with polygons) over locations

containing the various spectral diversities of the indi-

vidual land cover categories (i.e., a forest training

"area" polygon may delineate an area containing stands of

different tree species). The user then designates the

number of spectral clusters for each land cover training

area. One or two training areas are defined for each land

cover category (for example forested land, urban areas or

agricultural areas). These training areas cannot be

equated with subimages, since the spectral diversity with-

in each polygon is intended to represent the one or two

land cover types and not that of the whole image. An

unsupervised clustering aigorithm looks into each polygon

with a 3 x 3 window (Figure 8). The clustering algorithm

is based on the FINDSET approach detailed in section 2.11.

With a user defined threshold for the sum of the variance

of the spectral bands the algorithm searches for the

defined number of clusters (Figure 9). The window moves

through each polygon twice, in a checkerboard pattern; on

the second pass it looks at those areas that it skipped

I%
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over the first time. The checkerboard sampling pattern

results in the windows touching only at the corners. This

should reduce the effects of autocorrelation if it is

significant. After the first 50 clusters are identified,

the two clusters that are most similar are merged, accord-

ing to the same statistical distance metric used in

FINDSET, reducing the number by one. This continues until

the polygon area is processed. The total number of clus-

ters is then merged down to the user defined number of

spectral classes for that area.

In short, a user defined number of clusters are identified

to describe the various classes within each land cover

category delineated by a polygon. Such a Semi-Supervised

technique could be described as a stratified unsupervised

clustering technique. Since it entails both supervised

and unsupervised methods it is considered a hybrid

approach.

This technique is capable of reducing the bias, inherent

in clustering algorithms, of selecting clusters that

cannot adequately classify the whole image. Spectral

training statistics for all land cover classes in a scene

!r
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Figure 8. Unsupervised clustering within the

training areas.
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that the user is interested in classifying, could be

identified with a Semi-Supervised clustering algorithm.

Spectral diversities within each category, could be

identified by this Semi-Supervised clustering procedure,

rather than through a multitude of training sets labori-

ously pinpointed by an analyst.

The number of pixels collected for each spectral cluster,

from the training areas, may not be sufficient to repre-

sent statistically valid training sets for their prospec-

tive spectral category, therefore more spectral infor-

mation from throughout the scene should be accumulated.

An adequate sample population would be lOn to lOOn pixels,

where n is the number of spectral bands used in describing

the data. Thus, the clusters are then implemented as

seeds to pool spectral statistics from throughout the

scene to produce statistically valid training sets.

A 3x3 window is passed across the image, in a checkered I
pattern, to test areas for spectral homogeneity, according

to a user defined variance threshold (Figure 10). Pixels

in the homogeneous areas are merged with the most spec-

trally similar seed cluster according to a minimum statis-

-. A* A % ..,.
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tical distance operation. The seed clusters will not be

merge with each other. A transformed divergence require-

ment must be met before a cluster from the image is merged

with a seed. A second pass is not made throughout the

scene, to test areas skipped while implementing a check-

ered pattern, due to the increased run time involved.

There is an option given to the user to classify the scene

with the incipient training sets, from the polygons,

without fulfilling the seed option of the program.

Use of the transformed divergence operation as a measure

of spectral separability should prevent mismerging of

spectral data. Mismerging occurs when the cluster to be

merged possesses spectral characteristics that are not

represented by any of the seed clusters. The Semi-

Supervised training approach directs the unsupervised

clustering algorithm to train on certain areas. These

areas designated by the user may not contain all the

spectral diversity for a land cover type, thus when the

whole image is accessed these spectral signatures could be

mismerged with the improper training seeds. Transformed

divergence should prevent mismerging. Still, the result-

ing training sets would only be from the areas designated
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by the analyst; it is possible for the analyst to omit

certain spectral signatures resulting in unclassified

areas in the classification.

The resulting training sets are placed in a statistical

classifier to segment the image into the directed number

of land cover categories. The analyst can then determine

the relative significance of the individual spectral

classes within each category. As explained before, an

example would be different species in a stand of trees.

During the acquisition of spectral information, Second

Stage data may be simultaneously accessed and formulated

into statistics that represent the land cover of each

spectral class described in the clusters (Figure 9). For

each spectral window obtained in the polygon areas a 3 x 3

array of pixels in the Second Stage is also identified and

stored statistically. However, when the initial Second

Stage clusters are implemented as seeds, groups of pixels

in the Second Stage that do not meet a user defined vari-

ance threshold for the Second Stage, are not merged

(Figure 10). Also a transformed divergence criterion must

be fulfilled.
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Again, it is emphasized that the simultaneous acquisition

of Second Stage information is not required, if there are

no intentions of reclassification or a different approach

to reclassification is performed.

4.4 Transformed Divergence

Divergence is a measure of statistical separability be-

tween patterns (clusters); a distance measurement sen-

sitive to the means and variances of the distribution

(Lillesand and Kiefer, 1987). It can be written as an

equation involving the means and covariance matrices for

the two pattern distributions i and j, such as,

Dij = 1/2 Tr[(XZj-X)(Zj- 1-- )]

+ 1/2 TR[l/2(Xi- 1+Ej-l)(Ui-Uj)(Ui-Uj)T]

(Swain and Davis,1978).

This computed divergence value has an unlimited range, 0

to infinity, but the transformed divergence is a metric

that has a minimum and maximum value that can be defined,

0 to 2000.

. WN
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(D. ./8)

Dij T  = 2000 x [1-e ] / .

A transformed divergence solution of 0 - 1500 indicates

that the clusters are spectrally similar (Lillesand and

Kiefer, 1987) and can be merged. A value above the 1500

threshold indicates a 90% probability of being statis-

tically separate. Therefore, the homogeneous clusters

that are merged to the seeds in Semi-Supervised approach

must meet this range of transformed divergence mea-

surements before merging takes place.

4.5 Second Stage Reclassification Approach

4.5.1 Introduction

After the image has been classified spectrally, a Second

Stage of digital information is introduced to potentially

increase the accuracy by verifying and reclassifying the

spectral segmentation. The terminology 'Second Stage' is

synonymous with digital ancillary data in this study. In

the discussion of the theory of the reclassification,

texture will often be referred to as the Second Stage due

P, W- g
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to its relevancy, in the discussion, but other ancillary

data is amenable in the process.

In the past when spectral and texture features were com-

bined for scene segmentation joint multivariate training

statistics from both spectral and textural information

were employed (Jensen and Toll, 1982; Shih and

Schowengerdt, 1983). However, ancillary data may be more

beneficial if it were introduced, in a limited manner,

such as in the post-classification process which will now

be discussed.

Probably not all the land cover classes spectrally

classified should be reclassified with regards to the

Second Stage. Second stage data such as texture can be

relatively important in the final classification for only

a few land cover classes. Studies previously mentioned,

in chapter 3, demonstrate texture to be most useful in

limited operations.

In a post-classification process, the user designates the

appropriate land cover types, of a spectrally classified

image, to be reclassified according to textural infor-



W~ 
E 

U~ 

~ 
V~ 

EU 

v-6 

7W 

~I

95

mation. This prevents land cover types from being indis-

criminately classified by texture; only the appropriate

land cover types are reclassified.

Reclassification among certain land cover types could

produce favorable results. For instance, relatively high

textural values can be found within tree canopies that are

unlike the texture for grassy open fields or moderately

textured brush. Access of Second Stage textural infor-

mation should alleviate misclassification of grassland and

other such vegetation with forested land that may be

spectrally similar but texturally distinct. Similarly,

the Second Stage should be competent in dealing with other

classes. The user must designate the land cover cate-

gories that are to be reclassified according to the Second

Stage of information.

There are two different approaches to reclassification:

statistically based procedures and thresholding proce-

dures. The statistical method permits the implementation

of Second Stage statistical files, such as textural sta-

tistics. The thresholding procedures allow threshold

amenable data to be input into the reclassification. A
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binary mask or a geographical information system data base

are ancillary data that are amenable to threshold reclas-

sifications.

4.5.2 Statistical Reclassification

The statistical based approach will be discussed with

texture as the Second Stage data base.

The same training areas used in identifying the spectral

clusters will be utilized to find training set statistics

in the Second Stage (see Figures 9 and 10 and also section

4.3). These Second Stage training sets should describe

the individual land cover classes with ancillary data.

For each pixel classified spectrally there is a corre-

sponding textural value from the same spatial location

within the Second Stage image. If the Second Stage infor-

mation for the spectrally classified pixel is similar to

the Second Stage statistics compiled for that class, then

the pixel is considered correctly classified. Conversely,

when a pixel that is spectrally classified as a certain

class has a different textural value than that associated

with that class, then it is considered unclassified from

i
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that class.

When a pixel becomes unclassified it must be reclassified

according to the Second Stage data. Once again, in this

step the analyst would designate the land cover classes to

be reclassified, if misclassified, and the classes into

which each can be reclassified, including priority. This

process obviously requires some a priori knowledge of the

scene or experience on the part of the user.

The user designated specifications will create a reclas-

sification table that will be used by the algorithm to

conduct the reclassification among the appropriate

classes. Spectrally classified pixels, of the classes

designated by the user, will be reclassified according to

the reclassification table. This table will be an

arrangement of conditional statements, representing the

decision rules for reclassification (Figure 11).

The reclassification table will contain the land cover

class to be reclassified and the classes into which it can

be reclassified. Also the user must designate a proba-

bility threshold (standard deviation), so that the dis-
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criminant function (box-filter) can be utilized to reject

a classification, if the probability is too low.

To illustrate the function of the reclassification table,

the following example is provided (Figure 11). Assume the

classes into which the forest canopy can be reclassified

are brush (rangeland), grass, and marsh vegetation; listed

according to priority. (these are chosen as examples and

in the flow chart are called alternate classes). The

algorithm will go into the image and find pixels spec-

trally classified as forest and test its registered

textural value. If this textural value is considered to

be of this forest class, according to the statistics

describing the texture for this class, and surpasses the

probability threshold designated by the user, it is not

reclassified. But if it is not described by the textural

box type filter, or it is described, but falls below the

probability threshold the pixel will be reclassified. The

textural value is then compared to the textural statistics

of the first alternate class designated by the user for

reclassification. An identical type of test is performed

for this class and subsequent alternate classes designated

until the forest class is reclassified. If the forest
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pixel is not reclassified when the designated classes are

exhausted, then it remains classified as forest.

4.5.3 Threshold Reclassification

Any ancillary data that is amenable to thresholding proce-

dures can be implemented to reclassify certain classes of

the spectrally classified image. Thresholding involves

the identification of certain ranges or individual digital

values in an image for enhancing certain features in the

image or delineating certain cover types in the scene.

The latter is the purpose behind the threshold reclassi-

fication approach.

A polygon mask will be employed as the Second Stage image

file to illustrate this approach.

As with the statistical option, threshold reclassification

will only involve the appropriate classes in the classi-

fied image. The threshold technique permits reclassi-

fication according to individual values or ranges in the

Second Stage instead of statistics. The pixel is reclas-

sified into the class indicated by the analyst.
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For example, a body of water in a scene has specular

reflection that is spectrally classified as bare soil and

wet grassland because of its spectral signatures. A

polygon mask, of the water body, is generated by delin-

eating the water with a polygon and using a poly-masking

program. The masked image file has "zeros" in place of

the water (polygon) and unchanged values everywhere else

in the image.

With the threshold reclassification technique the analyst

could declare all bare soil and grass in the image to be

tested against the binary file. Every pixel that is

classified bare soil and grass and has a zero in the

Second Stage data file will be reclassified as water.

This could adequately remove the specular reflection.

Not all threshold amenable files are binary. Some will S-

contain more than two levels of data. For example,

geographic information system data bases have levels for

every category in the file. A zoning class data base may

have a level for each zoning category: different groups of

industrial, commercial and residential areas. A county

AS
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soil survey file may have levels for individual soil

textures.

To verify or reclassify certain land cover classes in a

spectrally classified image, an analyst may be interested

in comparing the classified data with certain ranges or

individual digital values in the Second Stage. Two

options are available for threshold reclassification. The

first one involves reclassifying classified pixels accord-

ing to a threshold level. This would reclassify a pixel

into a designated class if the value in the Second Stage

were less than or equal to the threshold value. The

second, reclassifying classified pixels according to a

threshold range, would reclassify a pixel into a class

designated by the analyst if the value in the Second Stage

were within this range.

The analyst input to the reclassification process would be

the classes to be reclassified, the option (by threshold

value or by threshold range), the threshold value(s) and

the class into which it is permitted to be reclassified.

ii~ 11
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To illustrate the function of threshold reclassification

see the flow chart, figure 12. The designated spectrally

classified pixel is compared to the corresponding Second

Stage value according to the option 1 or 2 decision rule.

Option 1: For each classified pixel designated, if the
Second Stage data base value is less than or equal to the
threshold value, defined by the user, then it is reclas-
sified into another class, also defined by the analyst.
(There is also an option to reclassify or not to reclas-
sify if this requirement is met.)

Second Stage value i threshold

Option 2: For each classified pixel designated, if the
Second Stage data base value is within the range, W

described by the analyst, then it is reclassified into
another class, defined by the user. (There is also an
option to reclassify or not to reclassify if this
requirement is met.)

thresholdl i Second Stage value K threshold2

4.6 Summation

In summation, the Semi-Supervised Two Stage Classification

Technique is a combination of two procedures that can be

executed independently. The Semi-Supervised clustering

algorithm can be used to classify a scene that will not be

reclassified. And an image classified with procedures .

other than the Semi-Supervised technique can be reclas-

sified. The title indicates Second Stage statistical

SW.
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information for the spectral classes can be simultaneously

acquired with the Semi-Supervised clustering algorithm.

The Semi-Supervised (directed) clustering approach may

potentially reduce the clustering bias of the FINDSET

algorithm. Also with the transformed divergence modifica-

tion mismerging of spectral clusters should be avoided

when the seeds acquire more spectral information from the

scene.

The post-classification reclassification technique can be

used to reassess certain classes, in a spectrally clas-

sified image, according to ancillary data. This discrim-

inant process has two methods of operation: statistical

reclassification and threshold level reclassification.

The Second Stage statistical information can be obtained

in a Semi-Supervised manner or in a supervised acquisi-

tion; the only thing that is required is that there are

Second Stage statistics for each spectral class to be

verified or into which it will be reclassified. The

Second Stage data base for the second option must be

amenable to thresholding, such as binary masks, map

overlays, digitized soil surveys, GIS data bases and even

p
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images that have been ratioed, if the relevant digital

values are known. Any digitally amenable ancillary data

could be implemented in a post-classification .

reclassification process.

16



107

Chapter V

Methodology

5.1 Introduction

Evaluation of the Semi-Supervised Two Stage Classification

Technique involves two sets of experimentation. One is

designed to evaluate the Semi-Supervised clustering

process and compare to the FINDSET unsupervised approach.

The second is intended to demonstrate the utility of the

Semi-Supervised clustering accompanied by a Second Stage

reclassification technique.

5.2 Study Sites

There are two study sites evaluated in this thesis.

The first is a subimage from a SPOT satellite image

located over Madison, Wisconsin. It was acquired on June

3, 1986 at about 11:00 AM Central Daylight Time (Figure

13). The subimage is 512 columns by 480 rows and is

located over the community of Middleton area of the

Greater-Madison area. Figure 13 is false color composite

of the three spectral bands recorded by the SPOT satel-

lite: green, red, and infrared. The western edge of Lake

' -. 5"%" *. < - VJ-V.' V" *C'' S " "..*..*.,S, '
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Mendota can be viewed in the bottom right of the scene.

The land cover types in the image are primarily agri-

cultural in nature with 3 wetland areas: Waunakee Marsh

(upper left), Dorn Creek Marsh (center right), and the

Pheasant Branch Creek Marsh (bottom right). The image was

taken early in the growing season, therefore most row

crops are primarily depicted as bare soil and emergent

vegetation. Perennial alfalfa fields are present through-

out the image. With a pixel ground resolution of 20

meters, the area covers approximately 10 kilometers

(approximately 6 miles) in each direction.

The second is a digitized aerial photograph taken over the

Chesapeake Bay Region, near Edgewood, Maryland (Figure

14). The prominent ground features in the image are

Watson Creek, and two partially reclaimed landfills sur-

rounded by thick forest canopies. It is a color infrared

aerial photograph taken on June 24, 1981. The image is

467 columns by 400 rows, with a pixel resolution of 0.50

meters. Each pixel is a point sample of approximately

every 3 meters on the ground (every sixth pixel of the

original digital image). The scale of the digital image

as viewed on the screen is 1:8000 and covers an area of

FLU61i M, W1 O1 V- PLO PL, P61 ft.- ft. --V • , ,-
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OAj

Figure 13. Middleton area study site, SPOT satellitek
sub-scene.
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Figure 14. Chesapeake Bay region study siteI

(original scale 1:10,000).
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1.3 km by 1.1 km. The site contains 5 basic land cover

categories to be segmented: forest, grass area, bare soil

(dry/disturbed land), man-made features and water.

5.3 Clustering Evaluation

The Middleton subimage will be used in the clustering

evaluation of the algorithms. In evaluating the Semi-

Supervised clustering process, the resulting classified

images from the Semi-Supervised clustering and FINDSET

clustering will be compared, and accuracy analysis will be

based on a supervised classification of the same scene.

To analyze clustering bias 4 different rotations of the

image will undergo clustering analysis and classification.

No spectral information is lost in the rotation.

A threshold variance must be selected for the clustering

algorithms. A variance threshold of 30 was selected to

identify homogeneous 3x3 windows in the Madison scene.

This threshold has been selected in accordance with exper-

iments in the previous months that evaluated clustering at

different logical threshold values. It was concluded that

Uthe suggested threshold of 30 (Ahearn,1986) for the sum of

-4 .%
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the variances in the spectral bands, adequately segmented

the image.

The selection of the variance threshold depends on the

land cover classes one is interested in describing. To

acquire training set statistics for uniform spectral

resources such as agricultural fields a lower variance

threshold should be selected. A selection of a higher

variance threshold would also permit training sets to be

identified for resources, such as forested areas, which by

nature have a high variation of spectral response.
V

The Semi-Supervised approach requires the analyst to des-

ignate a transformed divergence threshold value to prevent

mismerging of spectral data. A value between 0 and 2000

can be selected. Statistically, a value equal to or

greater than 1500 indicates that there is 90% confidence

that the clusters being compared are spectrally separate

and should not be merged. In these studies a value of

1500 was used in the clustering.
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At the Environmental Remote Sensing Center (ERSC) at the

University of Wisconsin-Madison there are two programs

that employ the SEARCH clustering method (see section

2.10): FINDSET and FINDCLASS. FINDSET was written first

and did not calculate a covariance matrix for the training

sets. FINDCLASS was written second and calculates a

covariance matrix. The algorithms are also different in

the way each accesses the image. In FINDSET 240 columns

of the image at a time are processed, stepping over 240

columns sequentially until the entire image is accessed.

FINDCLASS evaluates all the columns in the image at once,

sequentially evaluating every three rows.

Through preliminary analysis it was discovered that

FINDSET did not access more than 240 columns in the image.

The statistics that were gained from a subimage of 240

columns were identical to those of an image of 512

columns. Meanplots for 50 clusters from both images, of

240 and 512 columns, can be viewed in figure 15 and 16

respectively. No water bodies are located in the first

240 columns of the image. If clusters describing the

water were identified their means would plot in the lower

left hand corner of the meanplots, an indication of low
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spectral reflectance in the red and the infrared bands.

The vertical axis is the red spectral response while the

horizontal axis is the infrared. To verify the possibil-

ity that training set statistics for water were never

clustered, supervised training sets were acquired for the

four different water bodies in the image. The statistics

were plotted with the other 50 clusters in figure 17.

Note the differences in the lower left section of the

meanplots. Training sets for water were never acquired.

FINDCLASS was evaluated in a similar study ensuring it

accessed all the rows of an image, and was employed as the

'FINDSET' algorithm in which the Semi-Supervised approach

would be compared.

All classified results from the clustering algorithms will

be compared to the same thematic map that was segmented

using a supervised analysis. This thematic map in figure
5'

18 was generated by the Environmental Monitoring Practicum

Analysis class (Blohm, et al., 1987). The author of this

thesis was one of the primary classifiers in segmenting

the Middleton image during the practicum analysis. After

months of spectrally analyzing the image and several field

verifications, this scene was classified with 72 training
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Figure 18. Supervised classification of the
Middleton study area. 
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sets yielding a per pixel accuracy of 88% according to 95

test sites selected in the image. For the practicum anal-

ysis the image was classified into 12 land cover classes.

Unfortunately, information classes do not necessarily

represent spectral classes, which facilitate the eval-

uation of a clustering algorithm. Therefore, the super-

vised classification was renumbered accordingly. One of

the classes modified was the row crop category, which

contained 3 separate spectral classes: bare soil, hay I,

and hay II. They indicate 3 different levels of vegeta-

tion growth, in which both hay classes are titled as such

from ground truth information in the Middleton area. To

properly evaluate mismerging of spectral data by unsuper-

vised clustering algorithms it is appropriate to analyse

the segmentation of such spectral classes, rather than the

previous information classes. The resulting thematic map

involves 12 land cover classes: wetland (emergent vegeta-

tion), bare soil (row crop), hay I, hay II, peas, dis-

turbed vegetation, water, quarries (disturbed land), urban

(roads), forested areas, and an unclassified category.

Forests, wetland and disturbed vegetation are spectrally

similar and were very difficult to segment in many

instances. Disturbed vegetation is an information class



120

describing over-grazed pastures dominated by low growing

herbaceous vegetation. This class was selected because it

was consistently misclassified as wetlands and forest in

fields within the image. It must be noted that most

training set polygons for these classes were not acquired

within this sub-scene. The study area for the practicum

analysis was 1440 rows by 1094 columns.

5.4 Clustering of the Rotated Images

To analyze the Semi-Supervised and FINDCLASS clustering

algorithm for clustering bias, the Middleton image was

classified at different orientations. There are four

basic orientations, the original orientation (0 degrees),

seen in figure 13, and three relative rotations: 90, 180

and 270 degrees. Both algorithms were required to iden-

tify 50 clusters in each of the four orientations, and 27

clusters in the 0 and 90 degree rotations. The resulting

classifications segmented with FINDCLASS can be viewed in

figures 19 through 24, and those classified by the Semi-

Supervised approach can be seen in figures 25 to 30.

N % N
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In the four rotated Middleton images, FINDCLASS was

directed to identify 50 clusters, and in the typical

orientation and the image rotated 180 degrees 27 clusters

were requested. In figure 19, the FINDCLASS algorithm

found 48 clusters and classified the image into 12 land

cover classes: wetland (emergent vegetation), bare soil

(also row crops), alfalfa, hay I, hay II, peas, disturbed

vegetation, water, quarries (disturbed land), urban

(roads), forest and an unclassified category. The FINDSET %

and FINDCLASS algorithms identify 49 clusters when 50

clusters are requested because there is a final merging

between two of the 50 clusters after the last cluster is

identified. In the case of figure 19, 49 training sets

were identified and one could not be implemented into a

statistical classification program because the covariance

matrix was not acceptable (see section 6.3 in chapter 6

for details).

Figures 20, 21 and 22 involve the same image that has been

rotated from its original orientation in figure 19,

analyzed with the FINDCLASS clustering algorithm with 50

clusters, and classified. Figure 20 shows the classified

image rotated 90 degrees; figure 21 rotated 180 degrees,
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and figure 22 rotated 270 degrees. Figures 23 and 24 are

the same orientations as in figures 19 and 21, but the

FINDCLASS program was asked to identify only 27 clusters.

The Semi-Supervised clustering method was employed and

yielded the 6 classified images in figures 25 through 30.

Figure 25 illustrates the classified image in its original

orientation; figure 26 rotated 90 degrees; figure 27

rotated 180 degrees; and figure 28 rotated 270 degrees.

Figures 25 to 28 are segmented with 48 to 49 clusters.

Figure 29 is the original orientation classified with 26

Semi-Supervised clusters, and figure 30 is rotated 180

degrees and classified with 27 clusters. The classified

images of figures 25 and 28 were classified with only 48

Semi-Supervised clusters to retain an equal comparison

with the FINDCLASS output in figures 19 and 22.

Figures 19 to 30 were classified using a maximum likeli-

hood classifier with a box pre-processor filter (see

section 2.4.5). Pixels lying outside of the box filter

were unclassified. This classification algorithm will

classify only the image pixels described by the training

sets.
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Urban

Figure 19. Resulting classification from 48
FINDOIJASS clusters, original
orientation.
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Figure 20. Resulting classification from 49
FINDCLASS clusters, rotated
90 degrees.
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Figure 21. Resulting classification from 49
FINDCLASS clusters, rotated
180 degrees.
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Figure 22. Resulting classification from 48
FINDCLASS clusters, rotated
270 degrees.
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* Figure 23. Resulting classification from 26
FINDOIJASS clusters, original
orientation.
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Figure 24. Resulting classification from 27
FINDCLASS clusters, rotated
180 degrees.

P ~ ~ :%



129

Figure 25. Resulting classification from 48
Semi-Supervised clusters,
original orientation.
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Figure 26. Resulting classification from 49
Semi-Supervised clusters,
rotated 90 degrees.
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Figure 27. Resulting classification from 49
Semi-Supervised clusters,
rotated 180 degrees.
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Urban

Figure 28. Resulting classification from 48
Semi-Supervised clusters,
rotated 270 degrees.
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Figure 29. Resulting classification from 26
Semi-Supervised clusters,
original orientation.
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Figure 30. Resulting classification from 27
Semi-Supervised clusters,
rotated 180 degrees.
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5.5 Spectral Mismerging Evaluation

To evaluate spectral mismerging, the rotated classifica-

tions discussed in the previous section, figures 19

through 30, underwent accuracy assessments. Test sites

were delineated in the images and the resulting contin-

gency tables were analyzed.

Mismerging of spectral data during the clustering process

can be analyzed by assessing the classification accuracy

of certain cover types that possess clearly defined

boundaries in the supervised thematic map of Middleton.

Test sites are placed in these spectral classes, in the

classified images resulting from the FINDCLASS and Semi-

Supervised clustering analysis, and contingency tables are

produced to evaluate the errors of omission and errors of

commission.

Classes that possess clearly defined spectral boundaries

are bare soil, alfalfa, hay I, hay II, and some of the

forested areas. The remaining classes in the image do not

possess boundaries that can be considered spectrally

absolute, such as disturbed vegetation, wetland and some

.. i
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of the forest class. These categories have boundaries

that interfinger throughout the wetland areas and other

locations in the Middleton area. To quantitatively

evaluate the clustering algorithms for mismerging, test

sites were placed in areas known to be clearly defined

classes. Test sites were not placed in the wetland and

disturbed vegetation classes. Besides not having discrete

boundaries, supervised training sets statistics for these

classes were not easily acquired and most were not even

attained from this sub-scene. Therefore, an unsupervised

clustering algorithm cannot be expected to cluster quality

training set statistics for these classes that may not be

present. Test sites were not placed in the urban areas,

disturbed lands or the roads. These are not prominent

features in the image and good training sets statistics

for these classes were not acquired in this sub-scene

during the supervised training process.

Test sites were drawn in the supervised classified image

in areas described as bare soil, alfalfa, hay I, hay II,

and forest. Table I tabulates the site allocations.

' I
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Table I

TEST SITES EMPLOYED

Land Cover Class Number of Test Sites

Bare Soil 7
Alfalfa 5
Hay I 5
Hay II 5
Forest 2

5.6 Demonstration of the Semi-Supervised Two Stage

Reclassification

To demonstrate the Semi-Supervised Two Stage process, the

Chesapeake Bay image (Figure 14) was classified using the

Semi-Supervised clustering method and then reclassified

according to a Second Stage of ancillary data.

The Semi-Supervised clustering algorithm acquired 25

training sets defining the spectral diversity present in

the forest canopy, grassland, water, soil and man-made
.' .4

features. Three different reclassifications were imple-

mented separately according to texture, vegetation index

ratios, and a polygon mask, to exemplify the 3 different

options for reclassification: statistical, threshold range

and threshold value, respectively.

"S2
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As can be seen in figure 31, polygons were placed over

regions that represented the spectral diversity of each

land cover type. Four polygons were used: two in the

forest canopy, one over the grassland and bare soil (this

polygon is difficult to discern but is within the oval

landfill), and one over the water body, Watson creek.

The Chesapeake Bay image has the potential to demonstrate

the fact that cover types which are spectrally similar are

often misclassified and can be reclassified using ancil-

lary data. The shaded areas in the forest canopy and the

dark wet grassy areas, assumed to be marsh, are spectrally

similar and classified as forest according to the training

set from the forest canopy. All the pixels in the image

were classified with a maximum likelihood routine. In

figure 32, the areas misclassified as forest are located

primarily in the marshy grassland. More spectral statis-

tics could be gathered from the image to possibly elimi-

nate this problem or a reclassification with ancillary

data could be attempted. To demonstrate the reclassifica-

tion method the later was selected.

=p
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Figure 31. Chesapeake Bay study area with
Semi-Supervised traininE areas
delineated.
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Figure 32. Chesapeake Bay Semi-Supervised spectral
classification.
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Reclassifications were accomplished employing textural

information, vegetation index ratios and a derived polygon

mask, as ancillary Second Stage data, and can be seen in

figures 33 to 37. The resulting reclassified images are

listed in table 2. The Second Stage data bases such as

texture, vegetation index ratios and a polygon mask are

described in the following sections.

Table 2

LIST OF RECLASSIFICATIONS

Figure Type of Second Stage

33 Texture
34 Vegetation Index Ration (VI)

35 VI (smoothed)
36 Polygon Mask

W 37 Polygon Mask and VI

5.6.1 Texture - Second Stage

Textural statistics for each spectral training set are

simultaneously acquired in the Semi-Supervised process

from the textural image in figure 38.

'p
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Figure 33. Chesapeake Bay area reclassification
with texture.
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Figure 34. Chesapeake Bay area reclassification
with a vegetation index ratio.
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Figure 36. Chesapeake Bay area reclassified with
a polygon mask.
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Figure 37. Chesapeake Bay area reclassified with
both a vegetation index ratio and a
polygon mask.
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Figure 38. Chesapeake Lay texture image.
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The textural algorithm that will produce the textural

information should be very responsive to the textural

differences between forested and non-forested land cover.

The literature used to develop the textural algorithms on

the IBM AT's, at the Environmental Remote Sensing Center

Micro-processing Laboratory, suggested that four algo-

rithms are relatively ideal in discriminating between

forested and non-forested land cover (Weszka et al.,

1976). These are the Ist and 2nd order grey level statis-

tic algorithms called Mean and Contrast. Of these four,

the 1st order Mean and Contrast were compared, to evaluate

which one was the prime discriminator. The 2nd order

algorithms were not tested since (1) their computer pro-

cessing time was longer than the Ist order, and (2) the

difference in the textural output of the 1st and 2nd order

Mean and Contrast programs was insignificant considering

the extra time it takes to run the 2nd order algorithms.

The 1st order Mean program was proven more responsive to

.4 the texture than the Contrast algorithm. An effective

window size, 9 x 9, was selected after many experiments.

As a smaller window was implemented, the textural values

N- %~ N
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within the forest canopy became patchy, salt-and-peppered

gray tones, and the variance among the different textural

values increased. A window size of 9 x 9, the largest one

that can be selected in the program, produced more consis-

tent textural values within the canopy, with less vari-

ance. The direction values, in the algorithm, were chosen

according to the appearance of the output they produced.

Using a 9 x 9 window as the delta values decrease, from

'delta row' = 5 and 'delta column' = -5, to 'delta row' =

1 and 'delta column' = -1, the output became stringy, with

the appearance of noodles on a dinner plate.

During a previous project in which this area was classi-

fied with spectral and textural information, this author

found that a 9x9 window caused smearing of textural infor-

mation resulting in misclassification along the boundary.

Since the Mean program requires a 9x9 window to completely

describe the texture of the canopy, another algorithm was

evaluated.

F3
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An assessment of the two 1st order textural operations,

standard deviation with respect to the average, and the

standard deviation with respect to the center, yielded

positive results. Both algorithms were compared using a

3x3 window and the 'standard deviation with respect to the

average' appeared to have the most continuous texture for

describing the forest canopy. The textural image was

smoothed twice with an average spatial filter to ensure as

continuous and consistent a texture as could be attained

(Figure 38).

In figure 38, bright pixels indicate high textural values,

also referred to as a rougher texture. As discussed in

chapter 3, texture may enhance edges in an image, such as

the high textural values along the water and grassland

interface around Watson Creek. In general, the forest

canopy is represented by digital values ranging from about
5'

70 to 119. Grass contains textural measures in the 20's. 5'

Meanwhile, the edge anomalies in the data along Watson 5'

creek have measures in the 60's and the 70's, not repre-

sentative of either the grass or the water. Edge enhance-

ment also occurs on the landfill, in the center of the

image to the right, and also along the sinusoidal roads at
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the top of the image. A 3x3 window was used to create

this textural image to reduce these edge enhancements and

texture boundary smearing, in general.

A spectral variance threshold of 300 and a textural vari-

ance threshold of 70 were designated for the Semi-

Supervised clustering of the Chesapeake image. A variance

threshold of 300 permits the clustering of training sets

with high standard deviations which are typical for spec-

tral statistic of digitized aerial photographs with this

resolution. A value of 70 was found to be a reasonable

threshold for texture, affording clusters with high vari-

ance to be identified. High variance is often associated

with textural information.

The polygons in figure 32 were simultaneously drawn over

areas that contained textural information representative

of the spectral class. Therefore, the texture statistics

were successful in representing the cover type identified

by each spectral class.

The red band was selected as the channel in which texture

measures were computed for this image (for background
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information see section 3.5).

5.6.2 Vegetation Index Ratios - Second Stage

Two vegetation index rations were calculated from the

spectral data: (1) the infrared band divided by the red

band (IR/RED), and (2) RED/IR. After the ratio is

computed, the resulting values in the image are stretched

linearly to normalize the values from 0 - 255. In the

RED/IR ratio low digital values 0 - 6 represent the forest /

canopy. This is because low digital values in the red

band are divided by high digital values in the infraredk%
band resulting in small numbers, that are still low

ranging numbers when stretched linearly over a range of 0

to 255. The IR/RED ratio resulted in high values repre-

senting the forest. These threshold ranges were identi-

fied using an interactive program that level slices ranges

or values of an image on the computer monitor. Through

visual analysis it was determined that the IR/RED ratio

was slightly more descriptive of the canopy, with digital

values 21 - 255 selected and displayed in figure 39.

1 , a-
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Figure 39. Chesapeake Bay vegetation index ratio.
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To produce a more continuous representation of the forest

canopy in the vegetation index ratio the image was

smoothed employing an average spatial filtering operation

(Figure 40).

As an aside, in the vegetation index ratio, image values 0

- 9 identified water bodies, 10 - 20 grass, soil and man-

made features, and 21 - 255 represented the forest canopy.

The threshold range 10 - 20 could be broken up into ranges

that would separate grass and manmade features if the

analyst were interested in doing so.

Both ratio images figure 39 and 40 were employed in the

reclassification process.

5.6.3 Polygon Mask - Second Stage

The specular reflection in Watson Creek can be reclassi-

fied by implementing a polygon mask.

A polygon mask is created by altering all the values in an

image delineated by a polygon to a specific digital num-

ber, with the assistance of an image-processing program.
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A polygon mask can be placed into any band of data; in

this experiment, the red band was selected. With an

interactive program a cursor was used to draw a polygon

around the area in Watson Creek that contains the specular

reflection. The values within the polygon were altered to

zero and are displayed in black in figure 41.

5.6.4 The Second Stage Reclassification

Three spectral forest classes were identified in the

Chesapeake Bay classification for reclassification. The

classes describe the shaded areas in the forest canopy and

the dark wet grassland; and the spectrally vivid red found

in both the forest canopy and areas in the grassland. The

textural statistics for these classes represented the

forest canopy; and therefore, the pixels classified in the

grassland and marshes were considered misclassified and

candidates for reclassification according to textural

information. The textural values for these misclassified

pixels matched those of the textural statistics for

grassland, and therefore should be reclassified into the

grassland category with little difficulty.
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These same three classes could be reclassified according

to ranges designated in the vegetation index ration Second

Stage. The range delineating the forest canopy could be

employed. If a pixel classified as one of the above three

classes did not have a Second Stage value in the forest

canopy range, then it would be reclassified into a desig-

nated grass category.

To reclassify the specular reflection with a polygon mask

Second Stage, the classes that describe the specular

reflection are designated for reclassification. A

threshold value of zero is chosen for the Second Stage.

The identified categories in the classified image are

reclassified into a designated water class if the pixel's

Second Stage digital value is less than or equal to the

threshold.

5.6.5 Assessment of the Reclassified Images

The analysis of the reclassified images, figures 33 to 37,

is both quantitative and qualitative in nature. Histo-

grams were analyzed to evaluate the significance of the

changes. Comparison image files were created to visually
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show the pixels that were reclassified in each image. The

comparison images for each reclassification are listed in

table 3.

Table 3

LIST OF COMPARISON IMAGES

Figure Images Compared

42 Figures 32 and 33
43 Figures 32 and 34

44 Figures 32 and 35
45 Figures 32 and 36

The comparison image in figure 42 depicts the pixels re-

classified by texture. Figures 43 and 44 identifies those

pixels reclassified by a vegetation index ratio and

smoothed vegetation ratio, respectively. Figure 45 illu-

strates the reclassified pixels comprising the specular

reflection in the Chesapeake Bay image.

The results of the experimentation, discussed in the above

sections, are detailed in the following chapter.

IqZ



160

Figure 42. Image pixels in the Chesapeake Bay
region that were reclassified
according to texture.
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Figure 43. Image pixels in the Chesapeake Bay region
that were reclassified according to an
unsmoothed vegetation index ratio.
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Figure 44. Image pixels in the Chesapeake Bay regionthat were reclassified according to a.,smoothed vegetation index ratio.
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Figure 45. Image pixels in the Chesapeake Bay region
that were reclassified according to a
polygon mask.
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Chapter VI

Results

6.1 Introduction

The Semi-Supervised clustering technique was employed to

identify training set statistics in two images, the

Middleton image (Figure 13) and Chesapeake Bay region

(Figure 14). The post-classification Second Stage

reclassification was implemented to increase the classifi-

cation accuracy of the Chesapeake Bay image. In the

following chapter, results involving these two experiments

will be discussed. But first, the effects of the trans-

formed divergence criterion, in the Semi-Supervised algo-

rithm, and the statistical validity of the resulting

training sets, from the FINDCLASS and Semi-Supervised

clustering, will be detailed.

IF

6.2 Effects of the Transformed Divergence Calculation

The transformed divergence (TD) criterion was implemented

to prevent homogeneous windows of pixels in the image from

being mismerged with the seed clusters. The principle

being, that the initial seeds represent resources of

I_
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interest that the analyst has directed the Semi-Supervised

algorithm to describe. Since it is an analyst- directed

operation, some of the resources in an image may not be

represented by an initial seed. Therefore, if every

cluster that was considered homogeneous were merged with

one of the seeds according to a statistical distance

metric, mismerging is a likely result. A transformed

divergence criterion would not permit a cluster to be

merged unless it met a user defined transform divergence

threshold value.

To evaluate the difference that the transformed divergence

function has on cluster merging, Semi-Supervised seeds

were merged with clusters using a transformed divergence

requirement and not implementing the specification. The

resulting training set statistics were analyzed. Although

it is not evident that all the statistical results were

improved because of the transformed divergence calcula-

tion, the results were supportive of this theory.

In both cases, the training set statistics were printed

out before and after clusters from the whole image were

merged with the seeds. In some instances, fewer clusters

'ii
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were merged to some seeds when the transformed divergence

computation was employed. In comparing the statistics

before and after, the mean values of the initial clusters

were often altered less significantly, and the standard

deviations (an indication of variance) were lower or more

similar to those of the seeds when employing the trans-

formed divergence calculation.

This is demonstrated by two extreme cases; on the average,

the changes were not as significant, or made little dif-

ference in the small subset image on which this experiment

was executed. The examples are from a training set

document of two digital bands of data (Figure 46a and

46b).

The seed cluster number 7 (Figure 46a) had 18 pixels at

the start; and when merging took place without the TD

function, the number of pixels increased to 90 and the

means in both bands were significantly altered. However,

when the TD calculation was implemented, the number of

pixels resulting reduced to 63 and the means were not

altered as significantly as before. The standard devia-

tions were lower with the TD computation indicating that

- ~ ~ .- ~- ~ ~ **p~*.**~ * . ... **A
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:Set 7

Initial Seed :Set N 7 167
.Sat Nome: tree

.H Pixels: 1

:Means:
61.61111 144.16670 -S

:Standard Deviations:
9.96547 12.40108

:Covarience Matrix:
99.31046 47.30392

47.30392 155.79410

.Set 8:7

Without Transformed Divergence

!Set Name: tree

:N Pixels: 90

:Means:
46.72222 152.40000

:Standard Deviations:
18.42876 11.31835

:Covariance Matrix:
339.61860 -47.66292
-47.66292 128.10790

:Set J:7

With Transformed Divergence
:Set Name: tree

:M Pixels: 63

:Means:

51.44444 138.80950

:Standard Deviations:
10.73701 11.27923

:Covariance Matrix:
115.28320 28.71505
28.71505 127.22120

Figure 46a. The first example of training set
statistics created without the implement-
ation of the transformed divergence calcu-
lation and with transformed divergence.
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*set 9

Initial Seed 168
:Set Name. tree

:N Pixel.: 9

Mleans I
60.88809 140. 33310

:Standard Deviations:
5.66667 11.5:256

:Coverience Matrix:
32.11111 40.5417

•40.54167 133.00000

:Set 9: 9

Without Transformed Divergence
:Set Name! tree

:'N Pixels: 72
MHeant.!

53.33334 
157.30on0

:Standard Deviations!
14.40363 11.594n0

:Covariance Matrix:
207.46400 33.5n606
33.58616 134.47020

:Set 0: 9

With Transformed Divergence
:Set Name! tree

:N Pixels: 54

:MtensP
54.70370 163.07410.

I.
:Standard Deviations:

9.96393 11.37511

:Covariance Matrix:
99.08036 12.49406
12.49406 129.39060

Figure 46b. The second example of training set statis- .
tics created without the implementation of I.

the transformed divergence calculation and
with transformed divergence.

6W.
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mismerging was possibly reduced. As a side note, the

first band is textural data and the second is a spectral

band; both are from a digitized aerial photograph with

high resolution, and high standard deviations are expected

in the training set statistics. Similar evidence is

presented by training set number 9 in figure 46b.

In the previous chapter, it is noted that there is a

spectral class representing the forest canopy, in the

Chesapeake image, that is spectrally similar to the marsh _

areas. The initial texture statistics represented high

texture values of the forest canopy before the merging

began. After the merging process the textural statistics

gathered without the TD calculation were changed and

represented a smoother texture. This is probably due to

msmerging of the smoother textural statistics represent-

ing the marsh areas. With the TD calculation, the mis-

merging was prevented and the final textural statistics

still represented the forest canopy. These statistics

could then be used to reclassify the spectrally misclassi- .

fied pixels of this class in the image.

%
'A p
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6.3 The Statistical Validity of Training Sets

Statistical validity involves the number of pixels sampled

to represent a given population statistically. A training

set is considered statistically significant if it has at

least 1On pixels. The n refers to the number of digital

bands of data. Since 3 bands of data were used, in this

instance, a statistically significant number of pixels

would be 30.

The statistical validity of the training set output from

the Semi-Supervised and FINDCLASS clustering algorithms

was analyzed.

The FINDCLASS algorithm consistently produces numerous

clusters that have only 9 pixels. These classes are

obviously statistically invalid. The Semi-Supervised

approach creates fewer training sets containing a statis-

tically invalid number of pixels. The number of training

sets that resulted in 18 pixels or less were tabulated.

Table 4 lists the results from training sets files for two

images.

dr r r r
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Table 4

NUMBER OF CLASSES WITH 18 PIXELS OR LESS

Image Algorithm 9 pixels 18 pixels

1 FINDCLASS 6 7
SemiSupervised 0 3

2 FINDCLASS 6 3
Semi-Supervised 0 3

The FINDCLASS algorithm can be considered 'top heavy'

regarding the number of pixels in the training sets it

identifies first. Figure 47 contains the number of pixels

per training set from the FINDCLASS and Semi-Supervised

clustering approaches. As FINDCLASS processes the image,

each new cluster identified is considered the fiftieth

cluster, and the two most similar clusters are merged.

This continues throughout the whole image, and therefore

it is possible that the final clusters identified in the

image are represented by the training sets that contain 9

or 18 pixels. These sets may not have had the opportunity

to merge with spectral data from the entire image, whereas

the earlier clusters have done so. One training set

identified by FINDCLASS to classify figure 23 contained

18% of the image pixels, 45794 pixels.

%'
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Cluster # * Pixels Cluster # # Pixels

1 23238 1 1728
2 10332 2 585
3 9495 3 99
4 2331 4 117
5 4590 5 864
6 6723 6 459
7 6165 7 367
8 3681 8 1818
9 3024 9 1008
10 7767 10 657
11 126 11 1359
12 3717 12 216
13 2430 13 621
14 342 14 540
15 666 15 261
16 513 16 333
17 216 17 36
18 2016 18 72
19 9 19 711
20 3789 20 lo68
21 720 21 531
22 819 22 2070
23 243 23 207
21 729 24 468
25 R3 25 279
26 Z7 26 603
27 36 27 117
28 4275 28 369
29 126 29 783
30 2502 30 387
31 121 31 99
32 36 32 351
33 54 33 72
34 27 34 441
35 333 35 828
36 18 36 756
37 9 37 243
18 18 38 423 e
39 45 39 306
.10 36 40 126
41 9 41 99
42 18 42 63
43 9 43 558
44 9 44 27
45 18 45 126
46 18 46 2259
47 18 47 2115
48 18 48 1620
49 9 49 63

Figure 47. The number of pixels per training set
from the FITDCLASS and Semi-Supervise-
clustering approaches.
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The'Semi-Supervised technique produces more training sets

with valid distributions, indicating that each cluster

represents spectral samples from the entire image, as can

be seen in columns 3 an 4 of figure 47. The Semi-

Supervised approach creates training set seeds in the

polygons directed by the user, and each seed grows by

collecting similar spectral signatures from throughout the

image.

Another disquieting occurrence was noted regarding

FINDCLASS. It identified a training set in two of the

rotated Middleton images that could not be implemented

into the maximum likelihood classification algorithm. Two

problems emerged, the training sets covariance matrices

could not be inverted and a negative determinant was cal-

culated. The two training sets are presented in figure

48. Curiously enough, both training sets have only 9

pixels but the covariances between the 1st and 3rd and 2nd

and 3rd channel indicates an uncommonly vast distribution

of spectral data. These statistics were not used in the

classification of the image and could not have been

implemented in any event.
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:N Pixels: 9

Means:
51.556 36.222 0.000

:Standard Deviations:
1.740 2.635 4.475

:Covariance Matrix:
3.028 4.486 6287.000
4.486 6.944 4414.375

6287.000 4414.375 20.028

:Set *:49

:N Pixels: 9

Means:
51.556 36.222 19.889

:Standard Deviations:
1.740 2.635 4.475

:Covariance Matrix:
3.028 4.486 5133.444
4.486 6.944 3603.903

5133.444 3603.903 20.028

Figure 48. Aniomalous training sets within the
statistical Output of the FITDCIJASS
algorithm.



175

6.4 Improper Application of the FINDSHT Algorithm

In section 5.3, it was mentioned that the FINDSET program

did not completely access the image. Before this error

was discovered, however, FINDSET was employed -o cluster

data in rotated images to evaluate clustering bias dis-

cussed in section 2.11. The Middleton image in figure 13

was rotated and analyzed. Since the program only accessed

the first 240 columns of the image, when the image was in

the typical orientation, as in figure 18, no training sets

for water were identified. However, when the image was

rotated to the orientation in figure 21, nine training

sets were found.

The resulting statistics were used in a minimum distance

to mean classification algorithm which classifies all the

pixels in an image. Water would be classified whether or

not there were spectral statistics describing this land

cover. At first, it appeared that the FINDSRT algorithm

was biased towards the dominant land cover type of the

image, water, when it was the first class the algorithm

analyzed in the upper left hand corner. This was realized

to not be the case, since the algorithm never accessed the



176

water in the image (Figure 13 orientation) and never

acquired statistics for water, but the minimum distance to

mean classifier still classified the water with an organic

soil spectral training set ('z' in Figure 16). The

FINDCLASS algorithm discussed in section 5.3 accesses the

entire image and is the algorithm comparatively evaluated

within this thesis research.

6.5 Evaluation of Clustering Bias

The Middleton image was selected because of its diverse

land cover types in the entire image accompanied by one

dominant land cover class in the corner of the scene. The

dominant cover type could be positioned in all four

corners of the image, permitting the evaluation of

clustering bias.

FINDCLASS identified 8 or 9 training sets for water in

each of the four rotations depicted in figures 19 through

22. Table 5 summarizes the number of training sets

identified for water in each image.

---------
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Table 5

NUMBER OF FINDCLASS TRAINING SETS FOR WATER

FINDCLASS - 50 clusters

Figure Number of Training Sets for Water
19 9
20 9
21 8
22 8

The number of training sets that described water were not

significantly different, suggesting that there is no de-

pendence upon the rotation of the image. Therefore, from

this image it cannot be concluded that clustering bias is

a significant problem in the FINDCLASS approach to clus-

tering. Another experiment was devised to retest this

possibility.

Another area within the SPOT satellite scene over the

Cherokee marsh in Madison was selected, 200 columns by 480

rows (Figure 49). In its original orientation, the upper

half of the image is agricultural crops and a river which

leads to the lower half of the scene which is entirely

water. This image underwent clustering analysis at four

different rotations. The number of clusters describing

the water, from 50 clusters requested for each rotation
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are listed in table 6. The orientations in table 6 have

the following meaning: number 1 is the original orienta-

tion seen in figure 49, 2 is the original image rotated

180 degrees, 3 is the original rotated 90 degrees counter-

clockwise, and number 4 is the original rotated 90 degrees

clockwise.

Table 6

NUMBER OF WATER CLASSES - CHEROKEE MARSH

Orientation Number of Water Classes

1 Water Bottom Section 15

2 Water Top Section 11

3 Water Right Half 12

4 Water Left Half 13

Again, a consistent pattern indicating clustering bias is

not present in the Cherokee image. In this case, the

water body dominated over half of the image in each rota-

tion but the results were still inconclusive.

Although the number of classes describing water in the 4

rotations of the Middleton image were nearly identical,

the fact remains that there were an overabundant number of

K
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classes (at least 8) devoted to segmenting a relatively

simple cover type. Nine training sets are not required to

classify water accurately. In the practicum analysis,

only 5 spectral classes were used to segment water in an

image six times the size of the Middleton image.

The Semi-Supervised approach adequately classified water

by directing that 3 to 4 clusters define the water class

(Table 7).

Table 7

NUMBER OF SEMI-SUPERVISED CLASSES FOR WATER

Semi-Supervised - 50 Clusters
Figure Number of Training Sets for Water

25 3
26 4
27 4
28 4

Three Semi-Supervised training sets were requested from a

polygon drawn in the water; the fourth training set for

water was found in a polygon placed over the agricultural

areas. In figures 26, 27 and 28 the round pond near the

center of the scene was inadvertently contained within the

agricultural polygon.

a.-, -. P.i'-...................V- j'b'~~I ~ % V VV
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The Semi-Supervised approach permits the analyst to

designate the number of training sets that result in

segmenting earth resources, such as water, whereas the

FINDCLASS algorithm does not have this potential.

The disadvantage of FINDCLASS identifying 9 training sets

for water is that there are fewer clusters remaining to

describe cover types that may be more spectrally diverse.

The reduced number of clusters remaining facilitates the

potential for mismerging of spectral information. This

point will be discussed in the following section, which

discusses the overall results of the FINDCLASS and Semi-

Supervised clustering analysis.

6.6 Accuracy Assessment of the Resulting Classifications

In general, the resulting classifications, for the

Middleton area, of the FINDCLASS and Semi-Supervised

algorithms are very similar. Table 8 lists the accuracy

assessment of each image according to the test sites

discussed in section 5.5. As was discussed in section

5.5, the disturbed vegetation, wetland, and many of the
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areas classified as forest, are not quantitatively eval-

uated because they lack absolute classification boundaries

because of their spectral similarities. "Absolute" means

that the boundaries in the thematic map are considered

distinct, accurately classified and known. An appendix is

attached containing the resulting contingency tables

associated with the classification accuracies in table 8.

Table 8

ACCURACY ASSESSMENT OF CLASSIFIED IMAGES

Figure Overall Accuracy 5 Class Average Accuracy

(5 Classes) (5 Classes)

FINDCLASS - 50 Clusters

19 98.9 % 98.3 %

20 99.8 % 99.7 %
21 98.5 % 98.3 %
22 89.8 % 95.2 %

Semi-Supervised - 50 Clusters

25 97.2 % 95.8 %
26 98.2 % 97.4 %
27 97.4 % 96.7 %
28 98.2 % 98.2 %

FINDCLASS - 27 Clusters

23 83.0 % 76.4 %
24 77.7 % 57.5 %

Semi-Supervised - 27 Clusters

29 97.2 % 94.3 %
30 77.9 % 68.7 %
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The accuracy assessment in table 8 cannot stand alone in

describing the overall benefits or disadvantages of either

clustering algorithm.

At 49 clusters, the overall accuracy for the Semi-

Supervised approach is independent of the 4 rotations;

whereas, in the FINDCLASS algorithm, the fourth rotation,

figure 22, results in a spectral mismerging of the clus-

ters resulting in a reduced classification accuracy. In

figure 22, there is a misclassification of Hay II and the

bare soils. This is not the case in the Semi-Supervised

approach in figure 28.

The classification accuracy for the Semi-Supervised the-

matic map in figure 25 is reduced because some of the

pixels in the hay I test sites were labelled unclassified,

which is indicated in the contingency table in figure 50.

Except for these unclassified pixels, the accuracy assess-

ment for the same orientation clustered with FINDCLASS, in

figure 19, is very similar, as can be seen in the

contingency table in figure 51. r

LN&"p.
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Unclassified areas in the resulting thematic maps are

significant in that they indicate the resources that the

clustering analysis were unable to describe. In the

FINDCLASS thematic maps, quarries, urban features and edge

pixels are often unclassified. The 3x3 window biases the

algorithm against linear features and other resources that

cannot completely fill the window. In a satellite image,

such as SPOT, the resolution does not afford the roads in

the Middleton area to be wider than 2 pixels. Roads of 3

or 4 pixel widths usually entail mixed pixels which often

do not constitute homogeneous regions. The roads in the

Middleton image predominantly comprised of mixed pixels,

are classified as soils or hay, since training sets for

the roads are unattainable. This was found to be the case

in the supervised classification process until an adequate

road training set was described; in the practicum

analysis, this training set was not identified in the

Middleton area.

The FINDCLASS thematic maps classified quarries as both

unclassified and urban. On the other hand, in the Semi-

Supervised analysis, the quarries were completely unclas-

sified. Semi-Supervised training was not directed to
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cluster training sets for quarries, since quarries were

not in any of the polygons. Also pea fields were not

within the polygon areas for the classification in figure

25; subsequently, peas were accurately unclassified. In

figures 26, 27, and 28, pea fields were in one of the

training areas and were accurately classified. This

indicated that the Semi-Supervised approach prevents the

mismerging of spectral information describing the peas and

quarries with the other clusters. Mismerging is prevented

by the transformed divergence calculation which ensures

that resources not described by the initial seeds remain

unclassified. There are three pea fields in the Middleton

scene.

Identifying fewer than 49 clusters resulted in misclassi-

fication by both clustering algorithms for different

reasons, but the Semi-Supervised algorithm performance is

far more acceptable. In all cases, the misclassification

was less in the Semi-Supervised thematic maps.

The Semi-Supervised approach finds 27 initial seed clus-

ters, for example, in a directed manner, and then imple-

ments these clusters to collect spectral information from

I
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throughout the image. The FINDCLASS algorithm identifies

49 clusters in an image, and then merges down to the user-

defined number of clusters requested, 27 for example.

These clusters are merged according to a minimum statistic

distance rule, possibly mismerging clusters that are spec-

trally different. For mismerging to occur in the Semi-

Supervised approach, it will take place during the acqui-

sition of the initial clusters in each polygon. The seeds

are identified with a FINDCLASS operation in each polygon.

Therefore, to ensure that mismerging does not occur, in

the Semi-Supervised approach, the user must designate a

number of spectral classes to be found that is greater

than the spectral classes expected to result from that

training area. This should prevent the mismerging of

spectrally different clusters in the polygons. A trans-

formed divergence calculation, as discussed in section

6.2, prevents the mismerging of spectral information after

the seeds are created.

In figure 23, only 27 clusters were requested, and

FINDCLASS mismerged clusters, biasing the classification

toward the bare soils and hay I over hay II. Visually

assessing the classification, it is also noted that the

*2I
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disturbed vegetation class has been mostly classified as

wetland. These results are much different for the the-

matic map in figure 29, that was clustered with a Semi-

Supervised algorithm at 27 clusters (see Table 8). In

figure 29, there is slight mismerging among the bare soil

and hay II because of the reduced number of clusters

requested in the agricultural training area. Visually,

disturbed vegetation and wetland classes still remain with

very little misrepresentation, unlike figure 23. Peas

still remain unclassified in figure 29. Overall, the

mismerging is reduced considerably by the Semi-Supervised

technique, relatively speaking.

The Middleton image was rotated 180 degrees and 27 clus-

ters were identified by both algorithms. The resulting

classifications can be seen in figures 24 and 30,

FINDCLASS and Semi-supervised respectively. According to

the accuracy assessment in table 8, both performed

similarly. However, the FINDCLASS clustering process

merged all the clusters representing wetland, disturbed

vegetation, forest areas, and some clusters describing

alfalfa and hay I into one training set which is repre-

sented as wetland in figure 24. Alfalfa fields not
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designated as test sites for accuracy assessment were

included in this class. Also, hay I is no longer classi-

fied in the northern section of the Pheasant Branch Creek

marsh. All of the forested areas are misclassified by

this class. It must be emphasized that one spectral

training set described all of these areas that were

previously described by several classes. This can be

noted in the contingency table for this image in figure

52. Pixels in the test sites for hay I and forest were

misclassified as wetland. Comparing these results, for

figure 24, to the same image orientation in figure 21 at

49 FINDCLASS clusters, a significant mismerging of

training sets occurred when reducing the output from 50

clusters to 27. Also, as indicated in the accuracy

assessment in figure 52, mismerging occurred among the

bare soil and hay II classes.

The Semi-Supervised output for the same rotation can be

seen in figure 30. Relatively speaking, the mismerging

between bare soil and hay II is slightly reduced but still

occurs. This is due to the mismerging in the agricultural

polygon area with the unsupervised clustering algorithm,

because of the reduced number of clusters requested and a
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different order of acquisition of the polygon area, since

the image is now upside down. This coincides with the

previous conclusion that the results of the FINDCLASS

style of unsupervised clustering is dependent upon the

orientation of the image. An important point not

evidenced by the accuracy assessment, is that the Semi-

Supervised analysis reduced the mismerging of wetland,

forest, disturbed vegetation, alfalfa, and hay I that is

present in the FINDCLASS output in figure 24. Spectral

diversities of these classes were still described by the

Semi-Supervised approach. This is somewhat indicated by

the contingency table, in figure 53, for the hay I and

forest test sites, as compared to the contingency table in

figure 52 discussed above.

In summation, in all cases, the mismerging found in the

FINDCLASS algorithm has been reduced in the Semi-

Supervised technique. There is consistently a larger

number of pixels unclassified in the Semi-Supervised

thematic maps than in the FINDCLASS, an indication that

the Semi-Supervised approach is directed in nature. And

often, the unclassified areas represent land cover types

that were not trained on with the directed clustering

V I.- V
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analysis.

6.7 Assessment of the Semi-Supervised Two Stage

Reclassification

The results of the reclassification of the Chesapeake Bay

classified image (Figure 32) with ancillary data, such as

texture, vegetation index ratio and polygon masks will now

be discussed. The reclassified images can be viewed in

figures 33 through 37.

6.7.1 Texture Reclassification

The discriminant reclassification of selected classes, in

the Chesapeake Bay image, according to textural infor-

mation was very successful, and many of the details

discussed about texture and classifications can be related

to the results in figure 33. But first, it is important

that the reader visualize the outcome of classifying an

image with spectral and textural information indiscrim-

inately (Figure 54). In figure 54, the texture image was

implemented as a fourth band of digital information for

this classification. One training set classified the area
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Figure 54. Classification of the Chesapeake Bay
according to spectral and textural
information.
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displayed in black in figure 55. This supervised training

set was taken in the less vivid forest canopy and is spec-

trally similar to the grass. Areas denoted in black are

grassland which possess these spectral characteristics and

high textural values. These high texture areas are the

result of texture values smearing over the boundary of the

forest canopy and are also enhancements of edges on the

landfill and along Watson Creek. In figure 54, the

soil/road class is also misclassified because of the

addition of texture. A road training set placed on a

section of the road that has a bluish tint and a high

textural component, classified the dark wet grass near the

edge of the inlet where texture is high because of the

edge enhancement of the water/grass boundary. Because of

texture, the specular reflection and much more of the

surrounding water are classified into bare soil. Also,

blobs of the water are classified as bare soil because of

texture. It would be inviting to rename this training set

to water, but, unfortunately, the roads, the grass around

Watson creek, and the beach would all be misclassified.

The soil/road category is unaffected by texture when it is

implemented in a discriminant manner. Throughout the

following discussion, this image will be referred to

pN



197

regarding the results.

The Second Stage reclassification according to texture in

figure 33 had very positive results. The actual descrip-

tion of the forest canopy was to be maintained while the

misclassified pixels surrounding the forest in the grass-

land (Figure 32) would be reclassified. This has been

accomplished barring some small details. The pixels that

were reclassified can be viewed in figure 42.

Forest pixels still remain incorrectly classified in the

grassland, where the textural values were similar to the

forest canopy; texture values are high along the edges of

land cover features. Forest pixels still remain along the

upper part of the Watson Creek; but these remaining pixels

are not as unacceptable, as the entire misclassification

of the border along the Watson as in figure 54. In figure

33, Forest pixels remaining on the left side of the image

in the grassland should have been reclassified since there

appears to be the smooth texture present. There are two

reasons for this: (1) the texture in these areas matched

the textural statistics of the forest canopy, or (2) the

texture in these areas matched neither the forest textural
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Figure 55. Spectral-texture classification of the
Chesapeake study area with a selected
training set enihaniced in black.
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statistics nor the texture of the grassland, and therefore

were not reclassified. A small stand of trees to the left

of Watson Creek still remained classified correctly. The

small stand of trees at the mouth of Watson creek above

the Chesapeake still remained classified as forest, but it

appears in the texture image that texture representing a

forest canopy is not present. This stand probably sur-

vived the reclassification because the texture did not

match either forest or grassland as was mentioned above.

The detail of the main forest canopy that prevails in the

discriminant reclassification contrasts the appearance of

blobs describing the boundary of the canopy in the spec-

tral textural classification in figure 54. In the reclas-

sified forest, in figure 33, there are open spaces in the

canopy that identify the gaps where shrubs and brush are

present in image (Figure 14). These inlets are not

present in figure 54.

The reclassification according to texture changed 6.8 % of

the image to grassland (Figure 42).
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6.7.2 Vegetation Index Ratio Reclassification

There were two executions of the Second Stage reclassifi-

cation technique to reclassify misclassified forest

pixels, in the Chesapeake Bay region, with a vegetation

index ratio; first with an unsmoothed ratio (Figure 34)

and the second time with a smoothed version (Figure 35).

The smoothed vegetation index ratio in figure 40 was more

continuous and complete in describing the shape and area

of the forest canopy than the unsmoothed version in figure

39. After the reclassification with the unsmoothed ratio,

the forest canopy around the two landfills was very scanty

and not completely described. The pixels that were re-

classified can be viewed in figure 43; note: many pixels

in the forest canopy were reclassified into grassland.

The small stand of forest near the mouth of Watson Creek

in the lower section of the image is almost non-descript.

The smoothed vegetation index ratio prevented some of the

main forest canopy around the landfills from being reclas-

sified (Figure 44); but again the values in the ratio

describing the small stand of trees at the mouth of the

Watson were not present. The small stand in the resulting
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reclassification is hardly described.

The smoothed vegetation index ratio reclassified 13.2% of

the image as compared to texture, which reclassified 6.8%

of the image. This is due to a few reasons. The ve-geta-

tion index ratio reclassified pixels along the edge of the

roads and the upper portion of Watson Creek that prevailed

when the texture Second Stage was implemented. Also,

texture tends to smear the boundary of the forest, whereas

the ratio is more descriptive of the canopy's perimeter,

resulting in more reclassified pixels along the edge of

the canopy in the grassland. More of the forested pixels

in the grassland on the left side of the image and the top

section of the image are reclassified correctly according

to the ratio.

Four percentage fewer pixels were reclassified by the

smoothed vegetation index ratio than with the unsmoothed

version, primarily because the unsmoothed version did not

prevent many forest pixels in the main canopy and sur-

rounding the landfills from being reclassified. Figure 43

shows the pixels reclassified by the unsmoothed vegetation

index ratio.
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6.7.3 Polygon Mask Reclassification

The Second Stage reclassification implementing a polygon

mask to reclassify the specular reflection, in the

Chesapeake Bay image, was very successful (Figure 36).

All but a few pixels (not visible on the color reproduc-

tion) representing the specular reflection were reclassi-

fied into the water class. These appear to be two classes

that were not designated for reclassification. Zero point

eight percentage (0.8 %) of the image was reclassified.

In figure 37, a two part reclassification is demonstrated.

A vegetation index ratio reclassifies the misclassified

grassland, and the polygon mask reclassified the specular

reflection.

6.8 Closing Discussion

Section 2.12 mentions that the time required to execute a

program is one of the characteristics that should be noted

by the analyst in selecting the appropriate clustering

algorithm or classification.

Nor,
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The Semi-Supervised clustering algorithm processed 50

clusters in a 512 column by 480 row image in 30 minutes on

an 8 MHZ (megahertz) IBM PC-AT microcomputer and 43

minutes on a 4 MHZ machine. Second Stage statistics were

simultaneously acquired.

The FINDCLASS algorithm completely processed the same

image in 22 minutes on a PDP 1145 minicomputer. Second

Stage statistics could not be acquired with this program.

It should be noted that a minicomputer is much faster than

a portable microprocessor, and the FINDCLASS algorithm is

not an acquisition-directed approach like the Semi-

Supervised. The Semi-Supervised clustering algorithm is

essentially a supervised approach with an added unsuper-

vised twist. Therefore, it may be more appropriate to

compare the Semi-Supervised technique to the supervised

training process.

Three or four training areas can be identified in an image

in less than five minutes, and the Semi-Supervised clus-

tering analysis can grind out spectral training statistics

from these areas in 30 minutes while the analyst is work-

I
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ing on another project. It is questionable that an image

analyst can draw 50 polygons in selected homogeneous

areas, to represent the wide range of spectral diversities

in the land cover types of an image, in less than 35

minutes. And these polygons must then be input into two

programs that collect the pixel values delineated within

the polygons, and compute training sets statistics; this

could take another 5 to 10 minutes for 50 training sets.

And in the end, the training set statistics from both the

Semi-Supervised clustering algorithm and supervised ap-

proach, are placed in a statistical classification program

to evaluate how well the image was classified with these

statistics. And, still, the retraining process may have

to be done all over again. In the end, the results from

both processes are similar, therefore it should be noted,

that the Semi-Supervised approach allows a person time to

do other things.

The Second Stage reclassification is extremely fast.

Three forest classes were reclassified, according to

Second Stage textural statistics in a 467 column by 400

row image, in 5 minutes. The reclassification according

to a threshold range, takes less than 5 minutes. And the

I
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reclassification by a threshold value, takes about two-

and-one-half minutes.

Concluding remarks are discussed in the next chapter

followed by an appendix of the program source codes.

I
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Chapter VII

Conclusions

7.1 Semi-Supervised Clustering

The Semi-Supervised clustering algorithm performed

successfully, as anticipated. Overall, it performed

better than FINDCLASS in all aspects of the thesis

evaluation. FINDCLASS, however, performed better than

anticipated. There was no evidence of clustering bias in

the FINDCLASS algorithm toward the dominant land cover

class in the image. In the thesis hypothesis it was

stated that the Semi-Supervised clustering algorithm would

reduce some of the biases inherent in the FINDSET algo-

rithm. From these results, also discussed in section 6.5,

it cannot be concluded that the Semi-Supervised process

reduces the clustering bias. It was found that the Semi-

Supervised technique was able to control the number of

clusters that would describe the dominant land cover class

of the image, whereas the FINDCLASS algorithm found an

unpredictable number of clusters for such a category, and

the training sets were often redundant. The spectral

mismerging identified in the FINDCLASS algorithm was

reduced in the Semi-Supervised clustering process; this is

evidenced when fewer than 50 clusters were requested. The
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Semi-Supervised training set statistics were found to be

more statistically valid regarding the number of pixels in

each class, on whole, than those described by FINDCLASS.

This is because the training sets resulting from the Semi-

Supervised clustering involve spectral seeds that were

permitted to merge with spectral data from throughout the

image. The addition of the transformed divergence calcu-

lation prevents mismerging of spectral clusters in the

Semi-Supervised approach, permitting the analyst to direct

the clustering of spectral information of certain land

cover classes of interest. In summation, the Semi-

Supervised approach offers the analyst a priori knowledge

as to the utility of the resulting clusters, because it is

in fact guided by the user. The Semi-Supervised approach

is comparable to the supervised training process but

requires less input from the analyst, allowing the user to

economize his time.

7.2 Second Stage Reclassification

The hypothesis also stated that the application of

ancillary data, as a Second Stage, implemented in a

discriminant manner would improve the classification
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accuracy. It has been found that the discriminant

reclassification of spectrally classified images with

ancillary data did improve the classification accuracy.

This Second Stage post-classification reclassification is

able to recategorize only the classes the analyst desig-

nates, permitting the ancillary data to be applied to the

applicable land cover types. This is a notable benefit

since ancillary data often selectively contributes to the

classification of digital images.

Misclassified grassland areas were reclassified with

textural statistics and a vegetation index ratio. The

resulting classification with the vegetation index ratio

was slightly more descriptive of the actual shape and area

of the forest canopy and reclassified more misclassified

pixels in the grassland than the textural reclassifica-
I

tion. Reclassifications can be made, based on Second

Stage statistics, such as for texture, and can also be .

based on threshold ranges in a Second Stage image file.

The specular reflection in the water of a digitized aerial

photograph was successfully reclassified as water using a

polygon mask. The classes detailing the specular reflec-

lie
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tion were reclassified if they fell inside the designated

region of the Second Stage polygon mask. This type of

threshold value reclassification is based on a Second

Stage image file that is threshold amenable.

7.3 Summary

The Semi-Supervised Two Stage Classification technique was

found to be a viable method for classifying remotely

sensed digital imagery. A Semi-Supervised clustering

algorithm analyzes multispectral data to gather spectral

training set statistics from directed regions of the image

under the guidance of the analyst. This clustering algo-

rithm may also simultaneously acquire statistical informa-

tion from a Second Stage of information. Resulting spec-

tral statistics are then implemented into a statistical

classifier to segment the multispectral image.

The Second Stage involves a reclassification of a spec-

trally classified image based on ancillary data. There

are three different styles of reclassification: (1) a

statistical approach, (2) a threshold range approach and

(3) a threshold value approach.

e -
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The Semi-Supervised Two Stage Classification Technique has

proven to be a viable hybrid classification process for

the clustering, classification and reclassification of

remotely sensed data.

I.
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The source code for the Semi-Supervised Two Stage
Classification Technique may be found in the thesis copy
in Memorial Library.
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